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Abstract 

Extensive evidence supports the beneficial effects of sleep on memory and learning, including 

the consolidation and reorganization of memories and the extraction of regularities from 

encoded experiences. Nevertheless, some studies suggest that sleep may also increase false 

memories, potentially as a byproduct of regularities extraction. Physiologically, time-

compressed memory replay in the hippocampus during non-rapid-eye-movement (nREM) 

sleep is believed to contribute to the consolidation process, although the functional significance 

of time compression remains elusive. Recently, we proposed that compressed replay might 

allow associating events that happened at disparate times, thus supporting the extraction of 

regularities with a temporal nature. This model predicted that sleep might also facilitate a 

distinct kind of false memories, in which two separate events occurring consecutively are 

encoded as a single composite event. Here, we tested this prediction by exposing male and 

female adults to separate word pairs (e.g., car, pet) that could form a new composite word if 

combined (carpet). We then tested their memory for composite words following a period of 

sleep or wake. Confirming our main prediction, we found that sleep actively facilitated false 

composite memories. Furthermore, EEG recordings indicated the involvement of nREM sleep 

in the process, albeit in a nuanced manner: While some slow-wave or spindle-related 

parameters predicted increase in false memories, others were associated with fewer false 

memories and a decline in veridical memories. The latter result resembles previous findings 

from non-composite false memory studies and could suggest a competitive mechanism 

between semantic and episodic consolidation during sleep. 

 

Keywords: Slow Wave Sleep, Sleep and Memory, Memory Consolidation, False Memories, 

Sleep Spindles, Slow Oscillations, DRM 
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Highlights 

• Sleep is promoting the false recognition of words composed of two previously seen 

word components. 

• False composite memories are independent of the order of presentation of their 

components but rely on temporal proximity. 

• Slow wave sleep markers are predictive of false composite memories, but only when 

their components were presented in the forward direction. 
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1. Introduction 

Substantial evidence suggests that sleep plays a significant role in memory consolidation, from 

the simple facilitation of declarative memories to the reorganization of memories into schema-

like forms (Rasch & Born, 2013; Lewis & Durrant, 2011). Memory reorganization manifests in 

various way, including the implicit detection of patterns within encoded experiences, the explicit 

recognition of rules governing a set of encoded events, the extraction of gist from partially 

overlapping stimuli and the generalization of specific episodes to novel circumstances – all of 

which have been shown to benefit from sleep (e.g., Durrant et al., 2011; Ellenbogen et al., 2007; 

Friedrich et al., 2015; Graveline & Wamsley, 2017; Lerner & Gluck, 2018; Wilhelm et al., 

2013). Perhaps the most striking example of memory reorganization is exemplified by studies 

demonstrating that sleep supports the insightful discovery of hidden regularities. In these studies, 

subjects are presented with a sequence of stimuli and asked to respond to each stimulus by 

following a simple rule (Fischer et al., 2006; Wagner et al., 2004). Unbeknownst to subjects, a 

hidden structure governs the series of presentations such that, if discovered, it could improve 

performance significantly. Results show that following sleep, subjects are far more likely to 

explicitly discover the hidden regularities compared to subjects who stayed awake. Another 

example of a sleep-dependent effect often attributed to memory reorganization is demonstrated 

using the Deese-Roediger-McDermott (DRM) false memory paradigm (Roediger & McDermott, 

1995). In this task, participants memorize a list of words with a semantically related theme (e.g., 

hospital, nurse, patient) and are then tested on whether they falsely remember seeing the theme 

word (e.g., doctor). While results have not always been consistent, sleep in between study and 

test was occasionally shown to increase erroneous recall of the theme words, particularly when 

the list of studied words is short (Newbury & Monaghan, 2019).  

Physiological evidence from human and rodent studies shows that non-rapid-eye-

movement (nREM) sleep, particularly slow wave sleep (SWS), may be key to these effects 

(Wilhelm et al., 2013; Yordanova et al., 2012). During SWS, recently encoded memories are 

replayed in the hippocampus in an accelerated, “time-compressed” pace as part of a 

hippocampal-cortical dialogue (Diba & Buzsaki, 2007; Ji & Wilson, 2007). Theoretical 

frameworks such as the Active System Consolidation hypothesis (Diekelmann & Born, 2010) 

suggest that replay may contribute to the strengthening of common features in newly encoded 

memories while blunting their idiosyncratic elements, effectively leading to the extraction of 
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“gist” and the integration of those memories within the general knowledge structure residing in 

the cortex (McClelland et al., 1995; Lewis & Durrant, 2011). Nevertheless, the precise 

mechanism and the relevance of the time-compression attribute remain largely unknown (Abel et 

al., 2013). 

Recently, we have proposed a ‘temporal scaffolding’ model of SWS to explain the role of 

accelerated replay in insightful processes (Lerner & Gluck, 2019; 2022). Based on a review of 

the literature, we showed that explicit detection of hidden rules following sleep is mostly evident 

when the rules are temporal; that is, rules in which a stimulus happening at one timepoint 

predicts another stimulus happening a few seconds later. Such rules are not easily detected in real 

time when unexpected; however, if the relevant sequences are encoded in the hippocampus and 

then replayed during SWS at an accelerated pace, events that happened seconds apart are brought 

into a much shorter timescale (50-100ms; August & Levy, 1999), sufficient for associative 

Hebbian mechanisms to form the crucial temporal associations and allow recognition of the 

hidden regularities. 

Although our model was developed to explain how sleep contributes to the detection of 

temporal patterns, its mechanism – relying on time-compressed replay – gives rise to another 

prediction: The possible formation of a distinct type of sleep-dependent false memory that is not 

directly based on semantic relationships. Specifically, if several unrelated but temporally 

proximal events are encoded and then replayed in a compressed timescale one after the other, 

they could potentially be consolidated into a single, integrated memory. This prediction is based 

on the well-documented contribution of sleep to the consolidation of associative links between 

declarative memories. For example, in the classic paired-associates paradigm, subjects memorize 

word pairs like dog – leaf and later asked to recall the second word of each pair after being 

presented with the first. Sleep in between exposure and testing, particularly SWS, has been 

repeatedly shown to strengthen this association, especially when the two words are related in 

meaning (e.g., dog – bone), reflecting a tendency to retain semantic themes (Ellenbogen et al., 

2006; Payne et al., 2012; Plihal & Born, 1997; Walker & Stickgold, 2009). Moreover, similar 

effects can also emerge when stimuli pairs are encountered incidentally, without a deliberate 

memorization attempt (e.g., Schmieding et al., 2024). By the same token, we project that during 

sleep, separately encoded word pairs may be brought “together” through time-compressed replay 

and form associations such that they end up being consolidated as a single memory, particularly 



 

 7 

if that memory has a meaning of its own. For example, if subjects are presented with two 

consecutive words (e.g., car and pet) that could be combined into a composite word (carpet), the 

two distinct memories of car and pet might be integrated following sleep to become one false 

memory of seeing carpet – a memory reorganization of sorts, but one that builds on temporal 

proximity rather than just semantics. 

The current study aimed to test this prediction. We speculated that compared to wake, an 

afternoon nap would encourage the false recognition of composite words whose components 

were separately encountered prior to napping, and that SWS-related measures associated with 

memory replay would correlate with this effect. Confirming these hypotheses would suggest a 

potential functional role for time-compression in memory consolidation and, consequently, in the 

extraction of temporal regularities. 

2. Methods 

2.1. Overview of Study Design and Predictions 

We examined the effects of sleep on the formation of false composite memories by comparing 

how an afternoon nap, compared to wake, affected false recognition of composite words. 

Participants were first exposed to components of the composite words (e.g., for and mat), 

presented either sequentially within the same trial or split into distant trials, and later underwent 

a surprise memory recognition test for the composite words (e.g., format). Inclusion of the “split” 

condition served as control to the main sequential presentation: Both cases yield identical 

exposure to the components, but given the long time gap and numerous intervening items in 

between matching components of the split condition, only the sequential condition is expected to 

be influenced by time-compressed replay (i.e., the rapid reactivation of encoded sequences 

hypothesized to drive the predicted effects in the sleep group). The memory test also included 

old non-composite words presented earlier during exposure, as well as novel words never 

presented before. The ability to differentiate old words from (a) composite words presented 

sequentially, (b) composite words split across trials, and (c) totally novel words, was used as the 

outcome variable. Word type was manipulated within-subject, whereas wake versus sleep was 

manipulated between subjects, with one wake group tested soon after finishing the exposure 

phase (‘Wake-Immediate’), another wake group tested 2 hours later while remaining awake 

throughout (‘Wake-Delayed’), and the sleep group tested 2 hours later while sleeping in 
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between, thus forming a 3 x 3 mixed design. We predicted that sleep, compared to either wake 

groups, would facilitate the false recognition of composite words compared to novel words, but 

only when their components were presented sequentially during exposure (thus more likely to be 

replayed in a sequence) rather than when they were split into different trials. Moreover, we 

predicted that all participants who stayed awake, regardless of the interval length between 

exposure and test, would show similar outcomes, thus supporting the assertion that it is sleep that 

actively facilitates false composite memories rather the passive passage of time. See Fig. 2A for 

a summary of these behavioral predictions. We further predicted that various physiological 

measures of sleep that are known to be associated with replay and memory consolidation, such as 

the percent of time spent in SWS, the magnitude of slow oscillations (SO) and sleep spindles, 

and the degree of SO-spindle coupling, would be positively correlated with the degree of false 

composite memory.  

An additional subdivision of conditions was used to investigate a secondary prediction of 

the model. Specifically, exposure trials with sequentially presented composite words could have 

the components displayed in the forward direction (for –> mat) or in the backward direction (mat 

–> for). This added distinction was based on findings showing memory replay during SWS tends 

to occur more often in a forward than a backward manner – that is, an encoded sequence of 

events is more likely to be replayed in the same order as the original experience rather than in 

reverse (Diba & Buzsaki, 2007; Wikenheiser et al., 2013). We therefore predicted that sleep, 

while affecting memories for both directions of presentation, would nevertheless have a stronger 

effect in facilitating false memories of composite words whose components were presented 

sequentially in the forward direction compared to those presented backwards (Fig. 2B).  

 

 

2.2. Participants 

One hundred and six participants (N = 63 Females) were recruited for this study from the 

undergraduate student population at The University of Texas at San Antonio via campus ads and 

research participant pools and received either course credit or monetary compensation for their 

participation. The number of participants was chosen based on power calculations (Gpower 

3.1.9.2) informed by a previous pilot study (Lerner et al., 2019), to detect within-between 

interactions in a repeated measures ANOVA with 3 groups (sleep and two wake controls) and 3 
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repeated measures, assuming a medium-small effect size of partial 𝜂!	= 0.04, 𝛼 = 0.05, power (1-

𝛽) = 0.8, with sphericity assumed and no correlation between repeated measures, yielding a 

minimum sample size of 99.  Exclusion criteria included a history of sleep deficiencies, visual 

impairment consisting of uncorrected vision, a history of major neurological or psychiatric 

disorders, or head injury leading to unconsciousness. Participants were assigned by stratified 

randomization to either the experimental group (Sleep) or one of the two control groups (Wake-

Delayed, Wake-Immediate; See Experimental Procedure), matching the groups on age, 

education, gender, and sleep habits (Table 1). Several additional participants were removed from 

the study due to their responses indicating a failure to follow instructions (clicking 

indiscriminately on the same response again and again; 4 participants), failure to fall asleep (2 

participants) or missing behavioral data (1 participant). 

 

2.3 Behavioral Task  

2.3.1. Task Design 

Our false composite words task was partly inspired by previous studies demonstrating memory 

conjunction errors (e.g., Underwood & Zimmerman, 1973; but see Discussion for important 

differences between the two paradigms) and included two sessions: exposure and testing. In each 

trial of the exposure session, participants were presented with a pair of words in succession and 

asked to indicate whether one of the words or both/neither included the letter e by pressing one 

of two buttons. The task was chosen to ensure sufficient attention was given to the words without 

highlighting their meaning, with equal division between the two correct answers. The stimuli 

consisted of 3- and 6-letter words, with all four combinations of word lengths (3 and 3, 3 and 6, 6 

and 3, 6 and 6) appearing across trials in equal numbers. Critically, unbeknownst to participants, 

the 3-3 trials were composed of words that could be combined to form a six-letter composite 

word (e.g., carpet, composed of car and pet). In these trials, the words could be shown either in 

the direction consistent with the composite word (Forward condition: car followed by pet), or in 

the opposite direction (Backward condition: pet followed by car). In other trials, where 3-letter 

words were paired with 6-letter words (3-6 or 6-3), half of the 3-letter words could be combined 

to create composite words across trials (Split condition: e.g., the composite word carpet being 

split so that in one trial, car would be followed by doctor, and in another trial pet would be 

followed by beyond). None of the 3-letter words in either the Forward, Backward or Split 
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condition were semantically related to the 6-letter composite word they were part of. The 

remaining 3-6 and 6-3 trials, as well as all 6-6 trials, contained words that were neither part of 

nor containing any composites.  

In the testing session, participants received a surprise memory test. They were presented 

with a list of 6-letter words one-by-one and asked to indicate for each, on a scale of 1 to 6, how 

confident they felt that those words appeared in the first session (with a score of 1 indicating they 

were confident that the word did not appear previously and a score of 6 indicating they were 

confident that the word did appear previously). Half of the words in the list were 6-letter words 

previously presented in the first phase (“Old” condition). The other half were comprised of either 

completely novel words (“Novel” condition) or of composite words made from the two 3-letter 

words that appeared during the first experimental session, equally distributed between the 

Forward, Backward, and Split conditions (see Fig. 1A). The order of presentation of word pairs 

in the exposure session and words in the testing session was random.  

 

2.3.2. Stimuli preparation 

We compiled a list of eighteen 6-letter composite words, each representing the combination of 

two 3-letter words (e.g., car–pet; dam–pen; for–mat). The 18 words were organized into three 

groups of six words each, with similar average frequency (M = 15.56, 15.41, 15.48 

occurrences/million for the three groups, F(2,15) = 0.0006,  p > 0.99. See full list of words in 

Supplementary Table S1; frequency values were based on data from Davies, 2008-). The three 

word groups were used for the composite word conditions in the experiment (Forward, 

Backward, Split), with each 3-letter component serving as a 3-letter word in the exposure session 

and the full 6-letter composite word appearing in the testing session. For counterbalancing 

purposes, six versions of the exposure session stimuli were created, with each having a different 

composite word group used for a different condition. The six versions were cycled through all 

participants based on participant number.  

Other than the 18 composite words, we compiled an additional twelve 3-letter words and 

forty-eight 6-letter words to serve as the remaining stimuli in the 3-6, 6-3 and 6-6 trials of the 

exposure session for a total of 48 word-pair trials. The testing session included the 18 composite 

words, twenty-four of the 6-letter words that appeared in the exposure session, and additional six 

6-letter words serving as the Novel condition for a total of 48 trials. Finally, there were also 16 
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practice trials prior to the exposure session, divided equally between the 3-3, 3-6, 6-3 and 6-6 

combinations. No 3-letter strings (either 3-letter words or the first or second halves of 6-letter 

words) were repeated across the stimuli used in the task. 

 

2.4. Experimental Procedure  

Participants arrived to the lab in the afternoon and underwent the exposure and testing sessions 

with an interval in between (Fig. 1B). In the Sleep group, the interval totaled 120 minutes during 

which the participants were given the opportunity to sleep while attached to a Polysomnography 

device (PSG). The PSG was removed prior to the beginning of the testing session. In the Wake-

Delayed group, the interval also totaled 120 minutes, and participants were not allowed to sleep. 

Instead, they engaged in non-stimulating activities (watching National Geographic episodes). 

They were also equipped with the PSG during this interval. In the Wake-Immediate group, the 

interval totaled 15 minutes during which participants were not allowed to sleep, with no PSG 

monitoring. In this group, participants sat quietly in the lab and did not watch any videos or use 

any electronic device.  

All experimental sessions were conducted in a quiet room equipped with a bed, 

nightstand, desktop computer and some home-like decorations. Participant first received written 

instructions explaining the exposure session and then underwent a short practice. In each trial of 

the practice, the first word appeared in the middle of the screen for 500ms and was immediately 

followed by the second word, also appearing for 500ms. The screen then remained blank until 

participants gave their response by pressing either the ‘L’ or the ‘A’ button on the keyboard. 

They then received feedback (smiley face for correct answers, sad face for incorrect answers, 

appearing for 1 second), followed by an inter-trial interval (ITI) of 1.5 seconds before the next 

trial began. Following practice, participants were informed on screen that the actual experiment 

was about to begin. They were then presented with the experimental trials, which followed the 

same presentation schedule as practice but did not include feedback (Fig.1C, left). Instead, a 

crosshair appeared for 500ms after each response, followed by an ITI of 1 second before the next 

trial began. At the end of the exposure session, participants had a group-dependent interval as 

explained above, after which they received the testing session. They were first presented with 

instructions informing them of a surprise memory test on the words they have seen in the 

previous session; then, they were presented with one word at a time, appearing in the middle of 
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the screen, with a Likert scale below. The scale had 6 levels with a message indicating 

“Confidently New” and “Confidently Old” appearing to the left and right of it, respectively. 

Participants responded by moving a mouse curser to the level that indicated how positive they 

were that the word appeared in the previous session (1 representing new and 6 representing old) 

and pressed the mouse button to proceed to the next trial following a 1 second ITI (Fig.1C, 

right). Finally, at the conclusion of the testing session, participants were given a post-

experimental questionnaire to determine if they became aware of the hidden composite nature of 

some of the test stimuli. They were asked whether any unexpected patterns connecting the words 

in the exposure and testing sessions were observed, and if so, to describe the nature of the 

connection and provide examples. 

 

2.5. Sleep Monitoring and Data Extraction 

Sleep data was collected using the LiveAmp EEG system (Brain Vision LLC). The LiveAmp 

device was set up following the standard 10-20 system. Due to logistical or equipment errors, 

data from 6 participants in the Sleep group were not collected. All physiological sleep analysis 

was performed on the remaining 29 participants. 

 From the PSG recordings, we extracted parameters that are commonly considered to 

signal memory consolidation during nREM sleep (Rasch & Born, 2013; Kumral et al., 2023), 

including the percent of time spent in SWS, SO amplitude (peak to peak), spindle density, 

spindle power, and SO-spindle coupling phase and strength (see Supplementary Materials for 

similar results considering additional measures). A low-pass filter of 0.1Hz was applied to the 

raw EEG data collected with the 10-20 system to eliminate baseline drifts, and derivations were 

calculated for EEG channels C4-M1, C3-M2, F4-M1, F3-O2, O2-M1, O1-M2 and EOG channels 

E1-M2, E2-M1, in addition to the EMG channel. Sleep scoring was conducted by a trained sleep 

technician to determine the sleep stage in epochs of 30-second length and served to compute the 

total time spent in each sleep stage. SO and spindle parameters were extracted from the central 

derivations (C4-M1, C3-M2; results did not change markedly when using forward derivations 

instead) by a well-validated automatic algorithm using the default settings (YASA; Vallat & 

Walker, 2021). Results were then averaged over the two central derivations, except for when one 

derivation was substantially nosier than the other, in which case only the value for the less noisy 

derivation was used.  
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 Measures of SO-spindle coupling were extracted following standard procedures (e.g. 

Schreiner et al., 2021; Hahn et al., 2020). First, artifact removal was applied on each channel 

derivation of each participant using EEGLAB’s Independent Component Analysis (ICA) 

function. SOs for each participant were identified by filtering the data of each channel derivation 

between 0.16–2 Hz and detecting zero-crossings for all sections previously determined to belong 

to sleep stages N2 and N3. Potential SO events were considered for segments between each two 

consecutive positive-to-negative zero-crossings that met standard SO duration criteria (segment 

length between 0.8 to 2 seconds). Out of these segments, only those among the top 25% of peak-

to-peak amplitude were identified as SOs (‘SO amplitude criteria’). Five-second long epochs 

(±2.5 seconds centered on the trough of the SO segment) were extracted for each SO out of the 

raw signal. For spindle-detection, the raw data of each channel derivation of each participant was 

filtered between 12-16 Hz and a Hilbert transform was applied to retrieve the instantaneous 

amplitude. Then, for all sections previously determined to belong to sleep stages N2 and N3, we 

calculated the root mean square (RMS) using a moving average of 200 ms and set a 75% 

percentile of RMS values as the spindle amplitude threshold. A spindle event was detected for 

each instance where the RMS values exceeded the threshold for at least 0.5 seconds but no 

longer than 3 seconds. Five-second long epochs (±2.5 seconds centered on the peak of the 

spindle segment) were extracted for each spindle out of the raw signal. SO-spindle events were 

identified as those spindle-centered epochs in which the spindle peak occurred within 1.5 

seconds following an SO trough (Schreiner et al., 2021).  

 For SO-spindle coupling analysis, we normalized the SO-spindle events (using z-score 

with mean and standard deviations obtained for each participant and channel; Ladenbauer et al., 

2021), filtered them in the 0.16 - 2 Hz band and applied the Hilbert transform. The same 

procedure was repeated for the spindle band (12 – 16 Hz). To avoid filter edge artifacts, we only 

considered the time range within −2 to 2 seconds. We then extracted, for each spindle peak of 

each SO-spindle event, the instantaneous SO phase angle, and the resulting distribution of phases 

across SO-spindle events was tested against uniformity using the Rayleigh test. Finally, to 

measure the degree of coupling, we calculated the mean SO phase angle and the corresponding 

resultant vector length for each participant in each of the two central channel derivations. 

Matlab’s circular toolbox was used to extract phase angles, vector lengths, and to produce the 

resulting figures. 
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2.6. Statistical Analyses  

Based on the confidence levels of each participant in each testing condition (Composite, Split, 

Novel), Receiver Operating Characteristic (ROC) curves were created by comparing the False 

Positive (“False Alarm”) rate of each condition to the True Positive (“Hit”) Rate of the Old 

words condition. The area under the curve (AUC) was then calculated using the extrapolation 

technique (Stanislaw & Todorov, 1999) as a measure of participants’ ability to differentiate 

between old and new words of each condition (both the Composite and Split conditions are 

considered “new” because participants did not see any of the composite words as a single word 

before). The same analysis was conducted for the Forward Composite and the Backward 

Composite conditions separately. In cases the extrapolation technique yielded a bad fit (less than 

7% of the cases, roughly equally distributed among the groups), we calculated the AUC by the 

simple Trapezoidal rule (Yeh, 2002). 

For statistical analysis, we ran a marginal linear model with AUC as the dependent 

variable and Condition and Group as within- and between-subject factors, respectively. Analysis 

was performed in SPSS 27.0 using the Mixed models procedure employing robust covariances 

estimation. First, we compared the Sleep, Wake-Immediate and Wake-Delayed groups in the 

three critical word conditions: Composite, Split and Novel. The model thus included a main 

factor of Group with 3 levels and a main factor of Condition with 3 levels, as well as their 

interaction, using an unstructured covariance matrix. In addition, to control for the different 

versions of the exposure stimuli used to counterbalance between word groups, the model also 

included the stimuli version as a block factor, together with its interactions with all other factors 

(Pollastek & Well, 1995). Follow-up tests included pairwise comparisons between conditions for 

each group and group comparisons for each condition, corrected for multiple comparisons using 

the Holm-Sidak method. Finally, we ran a similar marginal linear model analysis to compare the 

two composite word conditions (Forward vs. Backward).  

To examine the associations with sleep physiology, we conducted a multiple regression 

analysis for the Sleep group participants, with AUC in each of the three critical conditions as the 

predicted variable and the physiological parameters of interests as predictors. A follow-up 

regression analysis was conducted separately for the Forward and Backward composite 

conditions to test whether each showed significant predictor effects on its own. Additionally, to 
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compare the Forward and Backward regression models directly, we ran a multivariate regression 

(seemingly unrelated regression – SUR; Zellner, 1962) followed by a Wald test of parameter 

equality to assess whether specific sets of predictors differed in their effects across the two 

conditions. Finally, to further clarify the sources of some of the effects, we ran a second set of 

regression models with the same predictors but using raw confidence scores as the outcome 

variables, as detailed in Results. The Holm-Sidak method was used to correct for multiple 

comparisons across word conditions in each level of the analysis. Additional analyses of the 

associations between physiological sleep parameters and task performance are described in the 

Supplementary Materials. 

Lastly, we also examined whether participants gained insight into the composite nature of 

the words by analyzing the post-experimental questionnaire. Participants were considered to 

have gained insight if, when asked whether any unexpected patterns connecting the words in the 

exposure and testing sessions were observed, they indicated that they noticed some words from 

the exposure session were combined in the testing session. Fisher’s exact test was conducted to 

examine if the number of participants gaining insight differed between groups. 

3. Results 

3.1. Task Performance  

We first verified that the groups did not differ in overall accuracy when performing the exposure 

session. A one-way analysis of variance showed that all groups performed the task with high 

accuracy (M = 0.92, M = 0.91, M = 0.87, for the Sleep, Wake-Delayed and Wake-Immediate 

groups, respectively) with no statistically significant differences between them (F(2,103)  = 1.14, 

p = 0.32). 

Next, we examined the expression of false composite memories during testing. Mean raw 

confidence levels for all groups and conditions are presented in Table 2. To analyze the effect of 

sleep, we compared participants’ sensitivity to old versus new words by building ROC curves for 

the main categories of new words (Composite, Split and Novel; see Supplementary Fig. S1A) 

and calculating the AUC as the sensitivity measure. Means and standard errors of the AUC are 

presented in Fig. 2C. A marginal linear model comparing the groups showed a significant main 

effect of Condition (F(2,264) = 8.51, p < 0.001) and a significant interaction between Group and 

Condition (F(4,264) = 2.60, p = 0.036). Following the significant interaction, Sidak-holm 
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corrected pairwise comparisons within each group showed that for the Sleep group, the 

Composite condition yielded a significantly lower sensitivity than either the Split (t(264) = 4.21, 

p < 0.001) or the Novel (t(264) = 4.46, p < 0.001) condition, whereas there was no difference 

between the Split and the Novel conditions (p = 0.29). In contrast, none of the pairwise 

comparisons were significant for any of the wake groups (all p’s > 0.21). Comparisons of the 

groups within each condition showed that for the Composite condition, the Sleep group 

displayed a significantly lower sensitivity than the Wake-Delayed group (t(264)  = 2.83 , p = 

0.015) and a similar trend when compared to the Wake-Immediate group (t(264)  = 2.01 , p = 

0.09), whereas the two wake groups did not differ from each other (p = 0.231). In contrast, there 

were no significant group differences for either the Split or the Novel conditions (all p’s > 0.58). 

Since the two wake groups did not differ in the Composite condition, we followed up with an 

independent t-test comparing the Sleep group in that condition to the two wake groups 

combined. The analysis showed a significant difference, with the Sleep group exhibiting smaller 

sensitivity than the combined wake group (t(104) = 2.59, p = 0.011). 

Having established the first predicted effect, we turned to examine whether the Forward 

and Backward Composite conditions differed between sleep and wake. We ran a second 

marginal model, identical to the first except that only the Forward and Backward Composite 

conditions were included. Means and standard errors are presented in Fig. 2D. The analysis 

showed a significant main effect of Group (F(2,176) = 3.39, p = 0.036), but neither Condition 

nor the interaction between Condition and Group were significant (both p’s > 0.67). Pairwise 

comparisons showed that across the two composite conditions, the Sleep group had a 

significantly lower sensitivity that the Wake-Delayed group (t(264)  = 2.54 , p = 0.035), though 

the difference between the Sleep and the Wake-Immediate groups did not reach statistical 

significance ((t(264)  = 1.86 , p = 0.124), and neither did the difference between the two wake 

groups (p = 0.309). Since the wake groups did not differ and only the main effect of Group was 

significant, we followed up by comparing the Sleep group with the two wake groups combined, 

across the two composite conditions. An independent t-test confirmed that the Sleep group 

exhibited significantly smaller sensitivity than the combined wake group (t(104)  = 2.34 , p = 

0.021). To summarize, while sleep lowered the sensitivity to composite words overall, there was 

no significant difference between the forward and backward composite words for any group. 
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Finally, since the AUC, our measure of sensitivity to old versus new words, was 

calculated by combining data from the Old condition with the other conditions, it did not provide 

a baseline memory measure of how each of the groups performed. To examine whether the 

groups differed on that respect, we compared their raw recognition confidence scores in the Old 

condition. Neither a one-way ANOVA comparing the three groups nor an independent t-test 

comparing the Sleep group to the combined wake control group yielded a significant effect (both 

p’s > 0.36). 

 

3.2. Analysis of post-experimental questionnaires 

We compared how many participants in each group became aware of the presence of composite 

words in the testing session. We found that only 3 participants in the Sleep group and 4 in each 

of the Wake control groups (8.6%, 11.1%, and 11.4% for the Sleep, Wake-Delayed, and the 

Wake-Immediate groups, respectively) gained such insight, with nearly all of them also able to 

give at least one example of a composite word. Fischer’s exact test showed that the groups did 

not differ on this aspect (p = 1.0) 

 

3.3. Associations between Sleep Physiology and Task Performance 

Sleep parameters of interest were extracted as described in Methods. These included the percent 

of time spent in SWS, SO amplitude, sleep spindle density and power, and SO-Spindle coupling 

phase and strength. For the SO-spindle analysis, we ran the Rayleigh test for each participant to 

examine whether the distribution of instantaneous SO phases when peak spindle amplitudes 

occur is significantly different from uniformity. We found that for 27 out of the 29 participants 

with available data, the distribution was significantly different from uniform (p < 0.05), 

replicating conclusions from previous studies about the existence of a mechanism at play that 

maintains coupling precision between spindles and SOs (Schreiner et al., 2021; Helfrich et al., 

2018; Staresina et al., 2015). Fig. 3A displays the grand average EEG signal across all SO-

spindle events, time-locked to the spindle peak amplitude (black line), together with the 

corresponding grand average of the same segment filtered in the SO band (blue line). Mean 

preferred phase was -69.41° ± 27.94°, with all preferred angles falling within the [0 180] range, 

and the mean vector length corresponding to the mean preferred angle was 0.88 (Fig. 3B). 
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3.3.1. Analysis of Sleep Parameters and AUC Scores 

To examine the relations between sleep physiology and behavioral performance in our 

experiment, we first calculated the pairwise correlations among all sleep parameters of interest 

and confirmed that none were highly correlated with each other (max|r| = 0.38; Fig. 3C), 

indicating that multicollinearity is unlikely to substantially affect the results (cf. Dormann et al., 

2013). We then ran multiple regression models for the AUC scores of participants in the Sleep 

group in each main experimental condition (Composite, Split and Novel; significance corrected 

for 3 multiple comparisons using Holm-Sidak) with the sleep parameters as predictors. Fig. 4 

(upper three rows) and Table 3 display the results. 

The regression model was significant for the Composite condition, (F(6, 21) = 4.45, 

uncorrected p = 0.005), with effects driven by a negative correlation with the percent of time 

spent in SWS (𝛽	= -0.391, p = 0.002), a marginally significant negative correlation with SO 

amplitude (𝛽	= -0.004, p = 0.067), and a positive correlation with spindle power (𝛽	= 0.343, p = 

0.003). For the Novel condition, the model was significant as well (F(6, 21) = 3.79, uncorrected 

p = 0.01), with effects driven by a negative correlation with SO amplitude (𝛽	= -0.005, p = 

0.017) and a marginally significant negative correlation with SWS percent (𝛽	= -0.221, p = 

0.077). The model did not reach significance for the Split condition (uncorrected p = 0.056), 

though inspection of the individual factors again showed negative associations with SWS and SO 

amplitude (Table 3). To follow up on the significant effect for the composite words, we reran the 

model separately for the AUC scores of the Forward and Backward Composite conditions 

(significance corrected for 2 multiple comparisons). Table 4 presents the results. We found that 

for the Forward condition, the model was significant (F(6, 21) = 3.39, uncorrected p = 0.017), 

driven, as in the overall Composite condition, by a negative correlation with SWS percent (𝛽	=   

-0.47, p = 0.006) and a marginally significant negative correlation with SO amplitude (𝛽	=          

-0.005, p = 0.075), as well as a positive correlation with spindle power (𝛽	= 0.509, p = 0.002). 

For the backward condition, the model was not significant (uncorrected p = 0.135). To follow up 

on the different results between the Forward and Backward conditions, we then compared the 

two directly. To that end, we conducted a joint Wald test for the 2 significant predictors found in 

the Forward model (SWS percent, spindle power). Results showed a marginal effect (𝜒!(2) = 

5.10, p = 0.078), indicating a potentially different influence of the two predictors for the Forward 

and Backward conditions. 
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To summarize, the regression models partially supported our hypothesis by showing that 

greater percentage of time spent in SWS and higher amplitude of slow oscillations predict 

reduced differentiability between real and false memories. In contrast, spindle power 

unexpectedly showed the opposite effect, with higher power predicting better differentiability. 

These correlations were evident for the Forward composite but not the Backward composite 

condition when examined separately. In addition, contrary to our prediction, the SO amplitude 

effect – and, to a lesser degree, the SWS effect – were also observed for non-composite words. 

 

3.3.2. Analysis of Sleep Parameters and Raw Confidence Scores 

Our previous analysis demonstrated the existence of various correlations between AUC 

scores and SWS-related physiological measures, some supporting our hypothesis and some 

contradicting it. However, since AUC scores represent the ability to distinguish between 

encountered and unencountered words, it remains unclear if these correlations reflected 

associations with increased false memories, a decline in real memories, or both. Moreover, when 

the same correlation emerges across both composite and non-composite conditions  - as was the 

case with the negative correlation of AUC and SO amplitude – it could be a byproduct of a single 

measure used to compute the AUC for all conditions, namely, the raw recognition confidence 

scores for old words. To further clarify the sources of our effects, we reran the regression models 

using the raw confidence scores of each word type (Forward, Backward, Split, Novel and Old, 

correcting for 5 multiple comparisons) as the outcome variables. Results are present in Table 5 

and Fig. 4 (bottom three rows). 

We found that for the Old condition, the model was significant (F(6, 21) = 4.96, 

uncorrected p = 0.003), with effects driven by a negative correlation with SO amplitude (𝛽	= -

0.029, p = 0.005). The model was also significant for the Forward composite condition (F(6, 21) 

= 3.68, uncorrected p = 0.012), with effects driven by a positive correlation with SWS percent 

(𝛽	= 1.979, p = 0.045) and a negative correlation with spindle power (𝛽	= -2.658, p = 0.006), as 

well as a negative correlation with SO-Spindle coupling phase (𝛽	= -1.161, p = 0.001). There 

were no significant effects for the Backward, Split or Novel conditions (all uncorrected p’s > 

0.75). Comparing the Forward and Backward regression models directly, a joint Wald test for the 

3 significant predictors (SWS percent, spindle power, SO-spindle coupling phase) yielded a 
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significant effect (𝜒!(3) = 8.24, p = 0.041), suggesting they influenced the two conditions 

differently. 

To summarize, the results suggest that the correlation between AUC scores and SO 

amplitude across the composite and non-composite conditions was likely driven by responses to 

the old words. In contrast, the correlations with SWS and spindle power in the Forward 

condition, observed both using the AUC scores and the raw confidence scores, were driven by 

the responses to the forward composite words (notice that the direction of correlations with 

confidence scores of composite words is consistent with correlations in the opposite direction 

with the corresponding AUC scores). In addition, the analysis of the raw confidence scores 

revealed a contribution of the SO-Spindle coupling phase: The closer the peak spindle amplitude 

got to alignment with the peak SO phase, the less participants erroneously recognized forward 

composite words as words they have seen before (see color illustration for the Forward 

Composite condition in Fig. 3B)  

4. Discussion 

Our findings in this study can be summarized as follows: (a) an afternoon nap contributes to the 

formation of false composite memories; sleep, compared to wake, enhances the false recognition 

of composite words when they are comprised of shorter word components presented in temporal 

proximity prior to sleep; (b) the order of presentation of the word components prior to sleep does 

not modulate the effect; (c) the percentage of time spent in SWS, the power of sleep spindles and 

the coupling phase between spindles and slow waves during the nap mitigate the effect, 

particularly when the word components are presented in the forward direction that fits their 

composite presentation after sleep. Higher proportion of SWS predicts more false memories, 

whereas greater spindle power and better SO-spindle alignment predict fewer false memories; (d) 

SO amplitude is associated with the weakening of real memories of words presented prior to 

sleep. In the following we discuss each of these results and suggest future directions to explore. 

  

4.1. Behavioral Effects  

Our behavioral results are mostly consistent with the predictions of the temporal scaffolding 

hypothesis (Lerner & Gluck, 2019; Lerner, 2017a; 2017b), which suggests that temporally 

compressed replay of an encoded memory sequence during SWS could result in the composition 
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of the sequence into a unitary memory if that memory can be seen as a single entity (as in the 

case of two words forming together a third, new word). Importantly, there was no difference 

between the two wake control groups tested either before or after the intermission, supporting the 

interpretation that sleep was actively changing memory representations rather than simply 

preventing a change that would have occurred anyway with time. The hypothesis further 

predicted a stronger effect for a forward presentation of the sequence compared to a backward 

presentation due to a bias towards forward replay during SWS (Wikenheiser et al., 2013). This 

effect was not observed behaviorally but was supported at the physiological level, where 

composite memories in the Forward condition displayed stronger associations with the sleep 

metrics compared to the Backward condition. Our results allude to several potential explanations 

for the discrepancy between the behavioral and physiological findings. One possibility is that our 

experimental manipulation was not strong enough to elicit a detectable behavioral difference 

between the Forward and Backward conditions. This interpretation is supported by a non-

significant but numerical difference between the two conditions, evident in the raw confidence 

scores of the sleep group (see Table 2). Another possibility is that several sleep mechanisms 

involved in the consolidation of forward composite words counteracted one another: Whereas 

SWS amount appeared to shift AUC scores of the Forward condition in one direction, spindle 

amplitude shifted them in the opposite direction (Table 3). The combination of these effects may 

therefore have resulted in the Forward and Backward conditions exhibiting similar behavioral 

scores. Nevertheless, both explanations leave open the question of why AUC scores for the 

Backward condition were lower than for the Split and Novel conditions in the sleep group. 

Ultimately, additional experiments may be necessary to clarify this effect, potentially reflecting a 

sleep-dependent mechanism that is yet unidentified. 

 

4.2. Slow Wave Sleep Metrics as Predictors of Behavior  

4.2.1. Slow Wave Metrics and False Memories 

The associations between our behavioral findings and the physiological measures of sleep 

confirmed the involvement of replay-related EEG markers in the process, although in a more 

nuanced way than originally hypothesized. Whereas the predicted positive correlation between 

false composite memories and slow wave-related parameters was identified for the percentage of 

time spent in SWS, spindle power and spindle-SO coupling exhibited the opposite effect. These 
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relationships suggest a more complex mechanism at play, where slow waves and spindles may 

not always act in concert when contributing to memory consolidation. One possible 

interpretation of this process is that spindles may have been involved in a form of compensatory 

mechanism, whereby a tendency to consolidate illusory compositions during slow wave sleep 

was countered by stronger spindle activity, particularly when they were coupled with slow 

waves. Spindles and spindle-SO coupling are often thought to reflect a hippocampal-cortical 

dialogue during which hippocampal memories are replayed, reorganized and transferred to the 

cortex for long-term storage (Rasch & Born, 2013). However, some models suggest that early 

forms of reorganization and regularities extraction are already present in the hippocampus itself 

(Gluck & Myers, 1993; Sucevic & Schapiro, 2023). Considering these models, our results could 

be explained by assuming: (a) the tendency to form false composite memories occurs within the 

hippocampus during SWS replay; and (b) stronger spindle activity reflects the disentanglement 

of those composite memories into their original separate components during the transfer. Such 

scenario would predict a positive correlation between false memories and the time spent in SWS 

but a negative correlation with spindle-related metrics. This possibility is strengthened by the 

fact that the physiological associations were more pronounced in the Forward Composite 

condition than the Backward condition, further aligning them with the known natural bias 

towards forward replay during sleep (Wikenheiser et al., 2013). Nevertheless, more evidence is 

needed to support this hypothesis – for example, by showing a positive correlation between false 

composite memories and direct indicators of hippocampal replay like sharp wave-ripples 

(Roumis & Frank, 2015), alongside a negative correlation with cortical-based measures like 

spindles. Potentially, this prediction could be tested in future experiments that allow measuring 

hippocampal activity directly, such as animal studies using an adapted version of the current 

task.  

 

4.2.2. Slow Wave Metrics and Real Memories 

Our second finding concerning the association between sleep physiology and behavioral 

measurements was that raw recognition confidence scores for old words were negatively 

correlated with the amplitude of SO, signifying a degradation in true memory as the amplitude 

increased in magnitude. This finding may seem surprising given that no significant difference 

was found between the sleep and wake groups in the raw recognition scores of old words, and, in 
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addition, most previous sleep studies suggest SWS contributes to the consolidation of memorized 

words rather than to their weakening (Plihal & Born, 1997; Rasch & Born, 2013). However, a 

very similar finding to ours was previously reported for false memories using the DRM 

paradigm. To reiterate, in the DRM task participants are exposed to semantically related words 

and are later tested on how well they remember these words as well as on whether they falsely 

remember the unseen theme word linking them. Utilizing this paradigm in a study involving 

sleep in between exposure and testing, Payne and colleagues (2009) found: (a) a negative 

correlation between the time spent in SWS during a nap and performance on studied 

(“veridical”) words; (b) no difference in the overall performance on veridical words between the 

sleep and wake groups; and (c) an increased rate of false memories in the sleep group (see also 

Newbury & Monaghan, 2019, for a meta-analysis showing no overall difference in veridical 

memory performance between sleep and wake in the DRM paradigm). These findings were then 

replicated by the same group, this time also detecting a negative correlation between SWS and 

false memories (Pardilla-Delgado & Payne, 2017) that echoed previous results in older adults 

(Lo et al., 2014). 

According to Payne and Colleagues, such a negative correlation with SWS may reflect 

the involvement of the semantic system in memorization during sleep as it tries to efficiently 

consolidate a list of words while facing the possibility to extract gist information (Payne et al., 

2009). Payne and Colleagues suggested that in such circumstances, the system may be 

encouraged to encode words based on their semantic relatedness rather than the more contextual, 

episodic-based memorization that SWS is known to enhance. Therefore, participants engaging in 

more SWS would, unfavorably, over-rely on the less efficient, non-semantic way to encode the 

DRM stimuli, leading to poorer recollection of veridical and thematic memories alike. Indeed, a 

tendency of sleep to prioritize abstraction processes at the expense of simple memory 

consolidation and vice versa has been documented in several previous studies using a variety of 

different behavioral paradigms (Alger & Payne, 2016; Davidson et al., 2018; Gomez et al., 2006; 

Lerner et al., 2021). Since our study, like the DRM paradigm, uses word stimuli to test memory, 

the current findings of SO Amplitude being negatively correlated with memory performance for 

old words and spindle parameters being negatively correlated with false composite words may 

reflect a similar process, by which the system invests resources in SWS-dependent episodic 

memorization at the expense of semantic encoding. Payne and colleagues did not examine any 
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associations between their behavioral measures and more particular SWS metrics such as sleep 

spindles, SO, or spindle-SO coupling, let alone their combination; therefore, it is not clear if false 

memories in the DRM paradigm would also reveal a positive relation to some SWS-related 

parameters if a more robust analysis is conducted. This question would be interesting to examine 

in future studies, with potential theoretical implications. 

 

4.3. Relation to Other False Memory Paradigms  

Finally, our composite words task bears some resemblance to another false memory paradigm, 

demonstrating “conjunction” errors (Underwood & Zimmerman, 1973). In these studies, 

participants are first exposed to words like heartburn and drumbeat and then undergo a memory 

test where they tend to falsely recognize conjunction words that contain parts of the exposed 

items, like heartbeat. There are, however, some important differences between this paradigm and 

ours, hinting that different mechanisms are at play. First, semantic relationships between exposed 

and tested items increase conjunction errors (Leding et al., 2007), whereas no such semantic 

relations existed in our stimuli. Second, theoretical accounts of conjunction errors point to the 

contribution of familiarity (Jones et al., 2001), while familiarity per se cannot explain our results 

given that we found no difference between the Split and Novel conditions. Finally, our results 

highlight the importance of temporal proximity during exposure to component words whereas no 

such proximity is required for conjunction errors. Nevertheless, future studies might examine 

whether sleep also affects the formation of conjunction errors and compare it to the effects found 

here and in the DRM paradigm. 

5. Conclusions 

The current study brought evidence for a new form of false memories enhanced by sleep. Unlike 

previous studies using the DRM paradigm that showed sleep may increase false memories with 

semantic relations to studied material, the type of false memories demonstrated here were linked 

to previously presented stimuli only through a low-level temporal association, and their sleep-

dependent facilitation is predicted by the temporal scaffolding hypothesis based on the presumed 

time-compression of memory replay during non-REM sleep. Indeed, as predicted, we found 

evidence linking the new effect to slow wave sleep, particularly when items were presented in 

the forward direction, consistent with the known bias towards forward memory replay during 
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sleep. Nevertheless, the linkage between sleep physiology and behavioral effects was more 

nuanced than predicted, with additional effects showing negative relations between sleep 

parameters and both false composite and veridical memories, potentially reflecting the 

involvement of semantic encoding in the process not unlike those present in the DRM paradigm. 

The full mechanism contributing to these effects remains to be further elucidated. 
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Tables 

 

Table 1. Demographic and Sleep Data of Participants (N = 106) 

Variable  Sleep Group  Wake-Delayed Group Wake-Immediate Group 
Number of Subjects N = 35 N = 36 N = 35 
Gender (M / F)  15 / 20 14 / 22 15 / 20 
Age  19.54 ± 1.93 19.56 ± 1.98 19.86 ± 1.44 
Years of Education  14.11 ± 1.19 13.94 ± 1.50 14.50 ± 1.43 
TST (min) 80.88 ± 25.67 -  -  
N1 (min)  9.65 ± 6.24 -  -  
  % N1 14.28 ± 12.18 -  -  
N2 (min) 42.62 ± 16.12 - - 
  % N2  54.66 ± 15.61 - - 
N3 (min) 16.57 ± 17.36 -  -  
  % N3 17.50 ± 16.93 - - 
REM (min) 12.05 ± 10.97 - - 
  % REM 13.56 ± 12.21 - - 

Demographic data of participants based on group. Sleep parameters presented only for the Sleep 
group. Numbers above represent Mean ± Standard Deviation. TST = total sleep time. N1 = 
minutes spent in stage 1 sleep. % N1 = percentage of time spent in stage 1 sleep out of total sleep 
time. N2 = minutes spent in stage 2 sleep. % N2 = percentage of time spent in stage 2 sleep out 
of total sleep time. N3 = minutes spent in SWS. % N3 = percentage of time spent in SWS out of 
total sleep time. REM = minutes spent in Rapid Eye Movement sleep. % REM = percentage of 
time spent in REM sleep out of total sleep time. 
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Table 2. Means and standard deviations of the confidence levels for each group and condition 
 Sleep Wake-Delayed Wake-Immediate 
Composite 3.55 (0.61) 3.38 (0.69) 3.29 (0.48) 
Composite - Forward 3.62 (0.86) 3.32 (0.84) 3.34 (0.61) 
Composite - Backward 3.49 (0.83) 3.44 (0.93) 3.25 (0.68) 
Split 3.28 (0.87) 3.42 (0.79) 3.40 (1.06) 
Novel 3.06 (0.79) 3.07 (0.92) 3.11 (0.97) 
Old 4.03 (0.58) 4.22 (0.64) 4.07 (0.54) 

 Higher values represent higher confidence that a word has been seen before. 
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Table 3. Multiple regression for AUC scores in each condition using the sleep predictors 
 Composite Split Novel 

Model fit F(6,21) = 4.4468 
p = 0.005, R2 = 0.4337 

F(6,21) = 2.4820 
p = 0.056, R2 = 0.2477 

F(6,21) = 3.7933 
p = 0.010, R2 = 0.3830 

 𝛽 p 𝛽 p 𝛽 p 
Intercept 0.3043 0.2756 0.8472     0.0228    0.9270    0.0055 
% SWS -0.3909 0.0016 -0.2735 0.0583   -0.2211 0.0767 
SO Amplitude -0.0037 0.0674 -0.0004 0.0862   -0.0054 0.0170 
Spindle Density -0.0044 0.7966 -0.0180     0.4071   -0.0039    0.8369 
Spindle Power 0.3426 0.0026 0.1179     0.3655    0.1360    0.2335 
Coupling Phase 0.0106 0.7704 -0.0218     0.6396   -0.0489    0.2299 
Coupling Strength -0.0006 0.9637 0.1327     0.4138    0.0135    0.9233 
p values of the overall model fit are before correction for multiple comparisons. Significant or 
marginally significant effects of predictors (not including intercept) are marked in grey. Adjusted 
R2 values are presented. % SWS = Percent of time spent in slow wave sleep; SO = Slow 
Oscillations.  
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Table 4. Multiple regression for AUC scores in the Composite Forward and Backward conditions  
 Forward Backward 

Model fit F(6,21) = 3.3884 
p = 0.017, R2 = 0.3467 

F(6,21) = 1.7044 
p = 0.169, R2 = 0.1353 

 𝛽 p 𝛽 p 
Intercept 0.1934 0.6235 0.7020     0.0846 
% SWS -0.4748 0.0056 -0.2080     0.1899 
SO Amplitude -0.0051 0.0746 -0.0034     0.2217 
Spindle Density -0.0166 0.4959 -0.0020     0.9330 
Spindle Power 0.5092 0.0019 0.1113     0.4460 
Coupling Phase 0.0865 0.1057 -0.0670     0.2042 
Coupling Strength 0.0738 0.6846 -0.1132     0.5339 

p values of the overall model fit are presented before correction for multiple comparisons. 
Significant or marginally significant effects of predictors (not including intercept) are marked in 
grey. Adjusted R2 values are presented. % SWS = Percent of time spent in slow wave sleep; SO 
= Slow Oscillations.  
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Table 5. Multiple regression for raw recognition scores using SO-Spindle coupling as predictors 
 Forward Backward Split Novel Old 

Model 
Fit 

F(6,21) = 3.68 
p = 0.012 
R2 = 0.374 

F(6,21) = 0.09 
p = 0.997 

R2 = -0.254 

F(6,21) = 0.56 
p = 0.751 

R2 = -0.106 

F(6,21) = 0.13 
p = 0.991 

R2 = -0.240 

F(6,21) = 4.96 
p = 0.003 
R2 = 0.468 

 𝛽 p 𝛽 p 𝛽 p 𝛽 p 𝛽 p 
Intercept 7.30 0.005 4.13 0.190 3.19 0.291 3.17 0.273 6.02 <0.001 
% SWS 1.98 0.045 0.53 0.662 0.87 0.464 0.529 0.640 -0.90 0.101 
SO amp 0.01 0.719 -0.00 0.871 -0.00 0.876 0.00 0.844 -0.03 0.005 
Sp. dns 0.12 0.400 0.12 0.545 0.19 0.303 0.10 0.564 -0.03 0.810 
Sp. pow -2.66 0.005 -0.29 0.801 0.04 0.969 -0.30 0.774 0.54 0.285 
Cpl. phs -1.16 0.001 -0.06 0.884 -0.35 0.379 -0.12 0.743 -0.28 0.123 
Cpl. str -0.95 0.390 0.32 0.820 -1.12 0.419 -0.40 0.762 -0.05 0.933 

p values of the overall model fit are presented before correction for multiple comparisons. 
Significant effects of predictors (not including intercept) are marked in grey. Adjusted R2 values 
are presented. % SWS = Percent of time spent in slow wave sleep; SO amp = Slow Oscillations 
amplitude; Sp. dns = spindle density; Sp. Pow = spindle power; Cpl. Phs = Spindle-SO coupling 
phase; Cpl. Str = Spindle-SO coupling strength. 
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Figures 

 

 
 

Fig. 1. Experimental design. A) Types of Trials in the exposure and testing Sessions. Top row 

shows the four types of trials administered to participants during the exposure session: Forward, 

Backward, Split, and Novel. Forward, Backward and Split conditions were counterbalanced 

across participants. Bottom image shows the four types of trials administered during the testing 

session: Composite (consisting of word compositions from either the Forward or Backward trials 

in the exposure session) Split (consisting of word compositions from the Split trials in the 

exposure session), Old (any non-composite words appearing during exposure), and Novel (words 

not seen during exposure). B) Example of trial progression for the Exposure (left) and Testing 

(right) sessions. During exposure, participants indicated if one or both words of a presented pair 

contained or did not contain the letter ‘e’. During testing, participants indicated how confident 

they are that a presented word was seen earlier during the exposure session. C) Experimental 

procedure. The Sleep group performed the exposure session during early afternoon, then had an 

opportunity to nap for 2 hours, followed by the testing session. The Wake-Delayed group had a 

similar schedule, only they were not allowed to nap during the 2-hour interval. The Wake-

Immediate group performed the exposure session at a similar time, and the testing session 15 

minutes afterwards without a long interval in between.  

 

 



 

 37 

 
Fig. 2. Main behavioral results of the experiment compared to predicted results. A) Illustration of 

the predicted differences in the ability to differentiate new from old words between the sleep and 

wake control groups for each of the main conditions (arbitrary units). B) Same as A, for the 

Forward versus Backward Composite conditions. C) Empirical AUC scores of all groups for the 

main experimental conditions. D) Same as C, for the Forward versus Backward Composite 

conditions. *** p < 0.001; ** p = 0.01; * p = 0.02; n.s., not significant.  
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Fig. 3. A) Grand average of EEG central channels across all SO-spindle events and participants, 

time-locked to spindle peak amplitude (black), together with the same segments filtered in the 

SO band (blue). B) Preferred SO phase at peak spindle amplitude across participants. Color 

represents the average raw confidence score in the Forward Composite condition per participant, 

from low (yellow) to high (dark red). C) Pairwise correlations between the physiological sleep 

predictors. Blue/green Intensity of each cell represents the value of the correlation (1 – Green, -1 

– blue) with the corresponding significance level indicated at the center. % SWS = Percent of 

time spent in slow wave sleep; SO Amp. = Slow oscillations amplitude; Sp. Density  = spindle 

density; Sp. Power  = spindle power; Cpl. Phase = SO-spindle coupling phase; Cpl. Strength = 

SO-spindle coupling strength. 
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Fig. 4. Partial correlations between main sleep parameters and AUC scores/raw recognition 

confidence scores for the critical conditions. r and p values for the residual correlations and the 

corresponding slope are displayed for significant correlations. 
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Supplementary Methods 
 
Composite words used in the study 
 

Supplementary Table S1. Composite words used in the study, organized by list. 
List 1 List 2 List 3 

Word Frequency Word Frequency Word Frequency 
ashram 0.3 campus 40.74 convex 0.57 
canvas 13.75 carpet 15.36 dampen 2.38 
hamper 4.38 curfew 2.82 donkey 3.81 
haptic 0.25 format 25.25 kidnap 9.47 
pallet 1.56 parrot 3.96 margin 22.57 
refuse 73.09 warden 4.33 profit 54.06 
Mean: 15.56  15.41  15.48 

Frequency in occurrences/million. 
 
 
 
Supplementary Results 
 

 
Supplementary Fig. S1. A) Average ROC curves for each condition and group. B Pairwise 
correlations between extended set of sleep parameters. SWS = Slow Wave Sleep. REM = Rapid 
Eye Movement; SO = Slow Oscillations; SWA = Slow Wave Activity; Amp. = Amplitude;  Sp. 
= Spindles. Cpl = Coupling. 
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Stepwise Regression Across Extended Set of Sleep Parameters  

In our main regression analysis of sleep physiology and behavior, predictors were chosen for 

their well-known role as indices of memory consolidation during slow wave sleep. However, 

there are other sleep parameters that have been used in the literature in relation with memory 

consolidation (e.g., Kumral et al., 2023). Many of these parameters are highly correlated with 

each other (e.g., |r|>0.7; See Fig S1B), preventing their inclusion in one single model due to 

multicollinearity concerns (Dormann et al., 2013). Nevertheless, it is important to verify that the 

main results are not dependent on a particular set of selected parameters. To that end, we 

complemented our multiple regression analyses by employing an alternative analytic approach to 

identify which predictors out of a larger set of potentially relevant parameters should be 

preferred when accounting for the behavioral data.  

Methods: We ran a stepwise regression analysis for each word condition presented in the main 

text to select factors that produce the best fit from a model selection perspective. Each of these 

analyses started with a default intercept-only model. At every step, variables were selected based 

on p-values of the F-statistics, with p <.05 being the criterion to add a term to the model and p 

>.10 being the criterion to remove an included term from the model. The set of potential 

parameters included all the original variables analyzed in the main text (%SWS, SO amplitude, 

spindle density, spindle power and SO-spindle coupling phase and strength), as well as the raw 

time spent in the main sleep stages (N2, SWS, REM), additional slow-wave parameters (slow-

wave activity (SWA), SO slope), and additional spindle parameters (spindle count, spindle 

amplitude). Time in each sleep stage was based on sleep scoring, and SO slope and spindle count 

and amplitude were extracted using the same YASA algorithm described in the main text. SWA 

was calculated following the method presented by Wilhelm and colleagues (2011): The raw data 

from the EEG derivations of each participant underwent high-pass (0.1Hz) and low-pass (30Hz) 

filtering and cleaned using Independent Component Analysis. Then, for all time periods spent 

during either N2 or SWS, the data were segmented into 10min consecutive time bin (we used 10 

instead of 20 minutes as in the original paper because we measured naps rather than overnight 

sleep, resulting in substantially shorter recordings) and for each bin we extracted the overall 

power in the SO and delta band (0.5-4Hz). We then calculated the median value over these bins 

for each derivation, and then the median over derivations from the central and frontal areas (C4-
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M1, C3-M2, F1-M1, F2-M2; we used medians rather than means to restrict occasional 

distortions resulting from channels with high non-biological noise, for example due to movement 

that was not sufficiently cleaned). This value served as the SWA for each participant. All 

processing related to SWA was executed with Matlab’s EEGLAB and the signal processing 

toolbox, and the stepwise procedure was accomplished with the function stepwiselm in Matlab 

2024b.  
 

Results: 

For the main AUC scores, results were as follows: 

• Composite condition: The model was significant (F(3, 24) = 4.74, p = 0.039, Adjusted R2 

= 0.500) with %SWS and SO amplitude retained as predictors with a negative association 

and spindle power retained as a predictor with a positive association. 

• Split condition:  The model was significant (F(1, 26) = 7.79, p = 0.009, Adjusted R2 = 

0.201) with SO amplitude retained as a sole predictor with a negative association. 

• Novel condition:  The model was significant (F(1, 26) = 13.87, p < 0.001, Adjusted R2 = 

0.323) with SO amplitude retained as a sole predictor with a negative association. 

For the Forward and Backward composite AUC scores, results were as follows: 

• Forward condition:  The model was significant (F(2, 25) = 6.87, p = 0.004, Adjusted R2 = 

0.303) with %SWS and SO amplitude retained as predictors with a negative association 

and spindle power retained as a predictor with a positive association. 

• Backward condition:  The model was significant (F(1, 26) = 6.05, p = 0.021, Adjusted R2 

= 0.158) with SO slope retained as a sole predictor with a negative association. 

For the raw confidence sores, results were as follows: 

• Forward condition: The model was significant (F(3, 24) = 10.4, p < 0.001, Adjusted R2 = 

0.510) with SWS retained as a predictor with a positive association and spindle amplitude 

and SO-spindle coupling phase retained as a predictors with a negative association. 

• Backward condition: no predictors added, default intercept-only model retained. 

• Split condition: no predictors added, default intercept-only model retained. 

• Novel condition: no predictors added, default intercept-only model retained. 

• Old condition: The model was significant (F(1, 26) = 22.6, p < 0.001, Adjusted R2 = 0.444) 

with SO slope retained as a sole predictor with a negative association. 
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Overall, results from the stepwise regression analysis closely mirrored findings from the multiple 

regression models (compare with Tables 2–4 in the main text) with differences mostly limited to 

substitutions among conceptually similar and highly correlated parameters (SWS and %SWS; 

SO amplitude and SO slope; spindle amplitude and spindle power; see Fig S1B), confirming the 

robustness of our main findings. 
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