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Abstract

Extensive evidence supports the beneficial effects of sleep on memory and learning, including
the consolidation and reorganization of memories and the extraction of regularities from
encoded experiences. Nevertheless, some studies suggest that sleep may also increase false
memories, potentially as a byproduct of regularities extraction. Physiologically, time-
compressed memory replay in the hippocampus during non-rapid-eye-movement (nREM)
sleep is believed to contribute to the consolidation process, although the funetional significance
of time compression remains elusive. Recently, we proposed that compressed replay might
allow associating events that happened at disparate times, thus supporting the extraction of
regularities with a temporal nature. This model predicted that sleep might also facilitate a
distinct kind of false memories, in which two separate events oceurring consecutively are
encoded as a single composite event. Here, we tested this prediction by exposing male and
female adults to separate word pairs (e.g., car, pet) that could form a new composite word if
combined (carpet). We then tested their memory for composite words following a period of
sleep or wake. Confirming our main prediction, we found that sleep actively facilitated false
composite memories. Furthermore, EEG recordings indicated the involvement of nREM sleep
in the process, albeit in a nuanced manner; While some slow-wave or spindle-related
parameters predicted increase in false memories, others were associated with fewer false
memories and a decline in veridicalimemories. The latter result resembles previous findings
from non-composite false:memory studies and could suggest a competitive mechanism

between semantic and episodie-consolidation during sleep.

Keywords: Slow Wave Sleep, Sleep and Memory, Memory Consolidation, False Memories,
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Highlights

Sleep is promoting the false recognition of words composed of two previously seen
word components.

False composite memories are independent of the order of presentation of their
components but rely on temporal proximity.

Slow wave sleep markers are predictive of false composite memories, but only when

their components were presented in the forward direction.



1. Introduction

Substantial evidence suggests that sleep plays a significant role in memory consolidation, from
the simple facilitation of declarative memories to the reorganization of memories into schema-
like forms (Rasch & Born, 2013; Lewis & Durrant, 2011). Memory reorganization manifests in
various way, including the implicit detection of patterns within encoded experiences, the explicit
recognition of rules governing a set of encoded events, the extraction of gist from partially
overlapping stimuli and the generalization of specific episodes to novel circumstances = all.of
which have been shown to benefit from sleep (e.g., Durrant et al., 2011; Ellenbogen et al., 2007;
Friedrich et al., 2015; Graveline & Wamsley, 2017; Lerner & Gluck, 2018; Wilhelm et al.,
2013). Perhaps the most striking example of memory reorganization is exemplified by studies
demonstrating that sleep supports the insightful discovery of hidden regularities. In these studies,
subjects are presented with a sequence of stimuli and asked to respond'to each stimulus by
following a simple rule (Fischer et al., 2006; Wagner et al., 2004). Unbeknownst to subjects, a
hidden structure governs the series of presentations such that, if discovered, it could improve
performance significantly. Results show that following sleep, subjects are far more likely to
explicitly discover the hidden regularities compared to subjects who stayed awake. Another
example of a sleep-dependent effect often attributed to memory reorganization is demonstrated
using the Deese-Roediger-McDermott (DRM) false memory paradigm (Roediger & McDermott,
1995). In this task, participants memorize a list of words with a semantically related theme (e.g.,
hospital, nurse, patient) and are then tested on whether they falsely remember seeing the theme
word (e.g., doctor). While results have not always been consistent, sleep in between study and
test was occasionally shown to increase erroneous recall of the theme words, particularly when
the list of studied words is short (Newbury & Monaghan, 2019).

Physiological evidence from human and rodent studies shows that non-rapid-eye-
movement (nREM) sleep, particularly slow wave sleep (SWS), may be key to these effects
(Wilhelm et al., 2013; Yordanova et al., 2012). During SWS, recently encoded memories are
replayed in the hippocampus in an accelerated, “time-compressed” pace as part of a
hippocampal-cortical dialogue (Diba & Buzsaki, 2007; Ji & Wilson, 2007). Theoretical
frameworks such as the Active System Consolidation hypothesis (Diekelmann & Born, 2010)
suggest that replay may contribute to the strengthening of common features in newly encoded

memories while blunting their idiosyncratic elements, effectively leading to the extraction of



“gist” and the integration of those memories within the general knowledge structure residing in
the cortex (McClelland et al., 1995; Lewis & Durrant, 2011). Nevertheless, the precise
mechanism and the relevance of the time-compression attribute remain largely unknown (Abel et
al., 2013).

Recently, we have proposed a ‘temporal scaffolding’ model of SWS to explain the role of
accelerated replay in insightful processes (Lerner & Gluck, 2019; 2022). Based on a review of
the literature, we showed that explicit detection of hidden rules following sleep is mostly evident
when the rules are temporal; that is, rules in which a stimulus happening at one.timepoint
predicts another stimulus happening a few seconds later. Such rules are not easily detected in real
time when unexpected; however, if the relevant sequences are encoded in the hippocampus and
then replayed during SWS at an accelerated pace, events that happened seconds apart are brought
into a much shorter timescale (50-100ms; August & Levy, 1999), sufficient for associative
Hebbian mechanisms to form the crucial temporal associations and allow recognition of the
hidden regularities.

Although our model was developed to explain how sleep contributes to the detection of
temporal patterns, its mechanism — relying on time-compressed replay — gives rise to another
prediction: The possible formation of a distinct type of sleep-dependent false memory that is not
directly based on semantic relationships. Specifically, if several unrelated but temporally
proximal events are encoded and then replayed in a compressed timescale one after the other,
they could potentially be consolidated into a single, integrated memory. This prediction is based
on the well-documented contribution of sleep to the consolidation of associative links between
declarative memories. For example, in the classic paired-associates paradigm, subjects memorize
word pairs like dog — leaf and later asked to recall the second word of each pair after being
presented with the first. Sleep in between exposure and testing, particularly SWS, has been
repeatedly shown to strengthen this association, especially when the two words are related in
meaning (e.g., dog — bone), reflecting a tendency to retain semantic themes (Ellenbogen et al.,
2006; Payne et al., 2012; Plihal & Born, 1997; Walker & Stickgold, 2009). Moreover, similar
effects can also emerge when stimuli pairs are encountered incidentally, without a deliberate
memorization attempt (e.g., Schmieding et al., 2024). By the same token, we project that during
sleep, separately encoded word pairs may be brought “together” through time-compressed replay

and form associations such that they end up being consolidated as a single memory, particularly



if that memory has a meaning of its own. For example, if subjects are presented with two
consecutive words (e.g., car and pet) that could be combined into a composite word (carpet), the
two distinct memories of car and pet might be integrated following sleep to become one false
memory of seeing carpet — a memory reorganization of sorts, but one that builds on temporal
proximity rather than just semantics.

The current study aimed to test this prediction. We speculated that compared to wake, an
afternoon nap would encourage the false recognition of composite words whose components
were separately encountered prior to napping, and that SWS-related measures associated with
memory replay would correlate with this effect. Confirming these hypotheses would suggest a
potential functional role for time-compression in memory consolidation and, consequently, in the

extraction of temporal regularities.

2. Methods

2.1. Overview of Study Design and Predictions

We examined the effects of sleep on the formation of false composite memories by comparing
how an afternoon nap, compared to wake, affected false recognition of composite words.
Participants were first exposed to components of the composite words (e.g., for and mart),
presented either sequentially within the same trial or split into distant trials, and later underwent
a surprise memory recognition test for the composite words (e.g., format). Inclusion of the “split”
condition served as control to the main sequential presentation: Both cases yield identical
exposure to the components, but given the long time gap and numerous intervening items in
between matching components of the split condition, only the sequential condition is expected to
be influenced by time-compressed replay (i.e., the rapid reactivation of encoded sequences
hypothesized to drive the predicted effects in the sleep group). The memory test also included
old non-composite words presented earlier during exposure, as well as novel words never
presented before. The ability to differentiate old words from (a) composite words presented
sequentially, (b) composite words split across trials, and (c) totally novel words, was used as the
outcome variable. Word type was manipulated within-subject, whereas wake versus sleep was
manipulated between subjects, with one wake group tested soon after finishing the exposure

phase (‘Wake-Immediate’), another wake group tested 2 hours later while remaining awake

throughout (‘Wake-Delayed’), and the sleep group tested 2 hours later while sleeping in



between, thus forming a 3 x 3 mixed design. We predicted that sleep, compared to either wake
groups, would facilitate the false recognition of composite words compared to novel words, but
only when their components were presented sequentially during exposure (thus more likely to be
replayed in a sequence) rather than when they were split into different trials. Moreover, we
predicted that all participants who stayed awake, regardless of the interval length between
exposure and test, would show similar outcomes, thus supporting the assertion that it\is sleep that
actively facilitates false composite memories rather the passive passage of time. See Fig. 2A for
a summary of these behavioral predictions. We further predicted that various physiological
measures of sleep that are known to be associated with replay and memory ¢onsolidation, such as
the percent of time spent in SWS, the magnitude of slow oscillations (SO) and sleep spindles,
and the degree of SO-spindle coupling, would be positively correlated with the degree of false
composite memory.

An additional subdivision of conditions was used to investigate a secondary prediction of
the model. Specifically, exposure trials with sequentially presented composite words could have
the components displayed in the forward direction (for —>mar) or in the backward direction (mat
—> for). This added distinction was based on findings showing memory replay during SWS tends
to occur more often in a forward than a backward manner — that is, an encoded sequence of
events is more likely to be replayed in the same order as the original experience rather than in
reverse (Diba & Buzsaki, 2007;, Wikenheiser et al., 2013). We therefore predicted that sleep,
while affecting memories for.both directions of presentation, would nevertheless have a stronger
effect in facilitating false memories of composite words whose components were presented

sequentially in the forward direction compared to those presented backwards (Fig. 2B).

2.2. Participants

One hundred and six participants (N = 63 Females) were recruited for this study from the
undergraduate student population at The University of Texas at San Antonio via campus ads and
research participant pools and received either course credit or monetary compensation for their
participation. The number of participants was chosen based on power calculations (Gpower
3.1.9.2) informed by a previous pilot study (Lerner et al., 2019), to detect within-between

interactions in a repeated measures ANOV A with 3 groups (sleep and two wake controls) and 3



repeated measures, assuming a medium-small effect size of partial n% = 0.04, a = 0.05, power (1-
B) = 0.8, with sphericity assumed and no correlation between repeated measures, yielding a
minimum sample size of 99. Exclusion criteria included a history of sleep deficiencies, visual
impairment consisting of uncorrected vision, a history of major neurological or psychiatric
disorders, or head injury leading to unconsciousness. Participants were assigned by stratified
randomization to either the experimental group (Sleep) or one of the two control groups (Wake-
Delayed, Wake-Immediate; See Experimental Procedure), matching the groups on age,
education, gender, and sleep habits (Table 1). Several additional participants were removed from
the study due to their responses indicating a failure to follow instructions (clicking
indiscriminately on the same response again and again; 4 participants), failure tofall asleep (2

participants) or missing behavioral data (1 participant).

2.3 Behavioral Task

2.3.1. Task Design

Our false composite words task was partly inspired by previous studies demonstrating memory
conjunction errors (e.g., Underwood & Zimmerman, 1973; but see Discussion for important
differences between the two paradigms) and included two sessions: exposure and testing. In each
trial of the exposure session, participants were presented with a pair of words in succession and
asked to indicate whether one of the words or both/neither included the letter e by pressing one
of two buttons. The task was chosen to ensure sufficient attention was given to the words without
highlighting their meaning, with equal division between the two correct answers. The stimuli
consisted of 3- and.6-letter words, with all four combinations of word lengths (3 and 3, 3 and 6, 6
and 3, 6 and 6).appearing across trials in equal numbers. Critically, unbeknownst to participants,
the 3-3 trials were composed of words that could be combined to form a six-letter composite
word (e.g.; carpet, composed of car and pet). In these trials, the words could be shown either in
the direction consistent with the composite word (Forward condition: car followed by pet), or in
the opposite direction (Backward condition: pet followed by car). In other trials, where 3-letter
words were paired with 6-letter words (3-6 or 6-3), half of the 3-letter words could be combined
to create composite words across trials (Split condition: e.g., the composite word carpet being
split so that in one trial, car would be followed by doctor, and in another trial pet would be

followed by beyond). None of the 3-letter words in either the Forward, Backward or Split



condition were semantically related to the 6-letter composite word they were part of. The
remaining 3-6 and 6-3 trials, as well as all 6-6 trials, contained words that were neither part of
nor containing any composites.

In the testing session, participants received a surprise memory test. They were presented
with a list of 6-letter words one-by-one and asked to indicate for each, on a scale of 1 to 6, how
confident they felt that those words appeared in the first session (with a score of 1 indicating they
were confident that the word did not appear previously and a score of 6 indicating they were
confident that the word did appear previously). Half of the words in the list were 6-letter; words
previously presented in the first phase (“Old” condition). The other half were comprised of either
completely novel words (“Novel” condition) or of composite words made from the two 3-letter
words that appeared during the first experimental session, equally distributed between the
Forward, Backward, and Split conditions (see Fig. 1A). The order of presentation of word pairs

in the exposure session and words in the testing session was random.

2.3.2. Stimuli preparation

We compiled a list of eighteen 6-letter compesite:words, each representing the combination of
two 3-letter words (e.g., car—pet; dam—pen, for-mat). The 18 words were organized into three
groups of six words each, with similar average frequency (M = 15.56, 15.41, 15.48
occurrences/million for the three groups, F(2,15) = 0.0006, p > 0.99. See full list of words in
Supplementary Table S1; frequency,values were based on data from Davies, 2008-). The three
word groups were used.for the composite word conditions in the experiment (Forward,
Backward, Split), with each 3-letter component serving as a 3-letter word in the exposure session
and the full 6-letter composite word appearing in the testing session. For counterbalancing
purposes, six versions of the exposure session stimuli were created, with each having a different
composite word group used for a different condition. The six versions were cycled through all
participants based on participant number.

Other than the 18 composite words, we compiled an additional twelve 3-letter words and
forty-eight 6-letter words to serve as the remaining stimuli in the 3-6, 6-3 and 6-6 trials of the
exposure session for a total of 48 word-pair trials. The testing session included the 18 composite
words, twenty-four of the 6-letter words that appeared in the exposure session, and additional six

6-letter words serving as the Novel condition for a total of 48 trials. Finally, there were also 16
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practice trials prior to the exposure session, divided equally between the 3-3, 3-6, 6-3 and 6-6
combinations. No 3-letter strings (either 3-letter words or the first or second halves of 6-letter

words) were repeated across the stimuli used in the task.

2.4. Experimental Procedure

Participants arrived to the lab in the afternoon and underwent the exposure and testing sessions
with an interval in between (Fig. 1B). In the Sleep group, the interval totaled 120 minutes during
which the participants were given the opportunity to sleep while attached to a Polysemnography
device (PSG). The PSG was removed prior to the beginning of the testing session. In the Wake-
Delayed group, the interval also totaled 120 minutes, and participants were not allowed to sleep.
Instead, they engaged in non-stimulating activities (watching National Geographic episodes).
They were also equipped with the PSG during this interval. Inthe Wake-Immediate group, the
interval totaled 15 minutes during which participants were not allowed to sleep, with no PSG
monitoring. In this group, participants sat quietly in the lab and-did not watch any videos or use
any electronic device.

All experimental sessions were conducted.in a quiet room equipped with a bed,
nightstand, desktop computer and some home-like decorations. Participant first received written
instructions explaining the exposure session and then underwent a short practice. In each trial of
the practice, the first word appeared in the middle of the screen for 500ms and was immediately
followed by the second word; also appearing for 500ms. The screen then remained blank until
participants gave their response by pressing either the ‘L’ or the ‘A’ button on the keyboard.
They then received.feedback (smiley face for correct answers, sad face for incorrect answers,
appearing for 1 second), followed by an inter-trial interval (ITI) of 1.5 seconds before the next
trial began. Following practice, participants were informed on screen that the actual experiment
was about to begin. They were then presented with the experimental trials, which followed the
same presentation schedule as practice but did not include feedback (Fig.1C, left). Instead, a
crosshair appeared for 500ms after each response, followed by an ITI of 1 second before the next
trial began. At the end of the exposure session, participants had a group-dependent interval as
explained above, after which they received the testing session. They were first presented with
instructions informing them of a surprise memory test on the words they have seen in the

previous session; then, they were presented with one word at a time, appearing in the middle of
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the screen, with a Likert scale below. The scale had 6 levels with a message indicating
“Confidently New” and “Confidently Old” appearing to the left and right of it, respectively.
Participants responded by moving a mouse curser to the level that indicated how positive they
were that the word appeared in the previous session (1 representing new and 6 representing old)
and pressed the mouse button to proceed to the next trial following a 1 second ITI (Fig.1C,
right). Finally, at the conclusion of the testing session, participants were given a post-
experimental questionnaire to determine if they became aware of the hidden composite nature of
some of the test stimuli. They were asked whether any unexpected patterns connecting the words
in the exposure and testing sessions were observed, and if so, to describe the nature of the

connection and provide examples.

2.5. Sleep Monitoring and Data Extraction
Sleep data was collected using the LiveAmp EEG system (Brain Vision LLC). The LiveAmp
device was set up following the standard 10-20 system. Due to logistical or equipment errors,
data from 6 participants in the Sleep group were not collected. All physiological sleep analysis
was performed on the remaining 29 participants.

From the PSG recordings, we extracted parameters that are commonly considered to
signal memory consolidation during nREM sleep (Rasch & Born, 2013; Kumral et al., 2023),
including the percent of time spent.in SWS, SO amplitude (peak to peak), spindle density,
spindle power, and SO-spindle coupling phase and strength (see Supplementary Materials for
similar results considering additional measures). A low-pass filter of 0.1Hz was applied to the
raw EEG data collected with the 10-20 system to eliminate baseline drifts, and derivations were
calculated for EEG channels C4-M1, C3-M2, F4-M1, F3-02, O2-M1, O1-M2 and EOG channels
E1-M2, E2-Ml, in addition to the EMG channel. Sleep scoring was conducted by a trained sleep
technician to'determine the sleep stage in epochs of 30-second length and served to compute the
total time spent in each sleep stage. SO and spindle parameters were extracted from the central
derivations (C4-M1, C3-M2; results did not change markedly when using forward derivations
instead) by a well-validated automatic algorithm using the default settings (YASA; Vallat &
Walker, 2021). Results were then averaged over the two central derivations, except for when one
derivation was substantially nosier than the other, in which case only the value for the less noisy

derivation was used.
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Measures of SO-spindle coupling were extracted following standard procedures (e.g.
Schreiner et al., 2021; Hahn et al., 2020). First, artifact removal was applied on each channel
derivation of each participant using EEGLAB’s Independent Component Analysis (ICA)
function. SOs for each participant were identified by filtering the data of each channel derivation
between 0.16-2 Hz and detecting zero-crossings for all sections previously determined to belong
to sleep stages N2 and N3. Potential SO events were considered for segments between each two
consecutive positive-to-negative zero-crossings that met standard SO duration criteria (segment
length between 0.8 to 2 seconds). Out of these segments, only those among the top 25% of peak-
to-peak amplitude were identified as SOs (‘SO amplitude criteria’). Five-second long epochs
(£2.5 seconds centered on the trough of the SO segment) were extracted for each'SO out of the
raw signal. For spindle-detection, the raw data of each channel derivation of each participant was
filtered between 12-16 Hz and a Hilbert transform was applied‘to retrieve the instantaneous
amplitude. Then, for all sections previously determined to belong to sleep stages N2 and N3, we
calculated the root mean square (RMS) using a moving average of 200 ms and set a 75%
percentile of RMS values as the spindle amplitude threshold. A spindle event was detected for
each instance where the RMS values exceeded the threshold for at least 0.5 seconds but no
longer than 3 seconds. Five-second long epochs (£2.5 seconds centered on the peak of the
spindle segment) were extracted for each spindle out of the raw signal. SO-spindle events were
identified as those spindle-centered-epochs in which the spindle peak occurred within 1.5
seconds following an SO trough (Schreiner et al., 2021).

For SO-spindle.coupling analysis, we normalized the SO-spindle events (using z-score
with mean and standard deviations obtained for each participant and channel; Ladenbauer et al.,
2021), filtered.them in the 0.16 - 2 Hz band and applied the Hilbert transform. The same
procedure was repeated for the spindle band (12 — 16 Hz). To avoid filter edge artifacts, we only
considered the time range within —2 to 2 seconds. We then extracted, for each spindle peak of
each SO-spindle event, the instantaneous SO phase angle, and the resulting distribution of phases
across SO-spindle events was tested against uniformity using the Rayleigh test. Finally, to
measure the degree of coupling, we calculated the mean SO phase angle and the corresponding
resultant vector length for each participant in each of the two central channel derivations.
Matlab’s circular toolbox was used to extract phase angles, vector lengths, and to produce the

resulting figures.
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2.6. Statistical Analyses

Based on the confidence levels of each participant in each testing condition (Composite, Split,
Novel), Receiver Operating Characteristic (ROC) curves were created by comparing the False
Positive (“False Alarm”) rate of each condition to the True Positive (“Hit”’) Rate of the Old
words condition. The area under the curve (AUC) was then calculated using the extrapolation
technique (Stanislaw & Todorov, 1999) as a measure of participants’ ability to differentiate
between old and new words of each condition (both the Composite and Split conditions are
considered “new” because participants did not see any of the composite words as a single word
before). The same analysis was conducted for the Forward Composite and the Backward
Composite conditions separately. In cases the extrapolation technique yielded a bad fit (less than
7% of the cases, roughly equally distributed among the groups), we calculated the AUC by the
simple Trapezoidal rule (Yeh, 2002).

For statistical analysis, we ran a marginal linear model with AUC as the dependent
variable and Condition and Group as within- and between-subject factors, respectively. Analysis
was performed in SPSS 27.0 using the Mixed models procedure employing robust covariances
estimation. First, we compared the Sleep, Wake-Immediate and Wake-Delayed groups in the
three critical word conditions: Composite, Split and Novel. The model thus included a main
factor of Group with 3 levels'and a main factor of Condition with 3 levels, as well as their
interaction, using an unstructured covariance matrix. In addition, to control for the different
versions of the exposure stimuli used to counterbalance between word groups, the model also
included the stimuli version as a block factor, together with its interactions with all other factors
(Pollastek & Well,.1995). Follow-up tests included pairwise comparisons between conditions for
each group and group comparisons for each condition, corrected for multiple comparisons using
the Holm-Sidak method. Finally, we ran a similar marginal linear model analysis to compare the
two composite word conditions (Forward vs. Backward).

To examine the associations with sleep physiology, we conducted a multiple regression
analysis for the Sleep group participants, with AUC in each of the three critical conditions as the
predicted variable and the physiological parameters of interests as predictors. A follow-up
regression analysis was conducted separately for the Forward and Backward composite

conditions to test whether each showed significant predictor effects on its own. Additionally, to
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compare the Forward and Backward regression models directly, we ran a multivariate regression
(seemingly unrelated regression — SUR; Zellner, 1962) followed by a Wald test of parameter
equality to assess whether specific sets of predictors differed in their effects across the two
conditions. Finally, to further clarify the sources of some of the effects, we ran a second set of
regression models with the same predictors but using raw confidence scores as the outcome
variables, as detailed in Results. The Holm-Sidak method was used to correct for multiple
comparisons across word conditions in each level of the analysis. Additional analyses. of the
associations between physiological sleep parameters and task performance are described in the
Supplementary Materials.

Lastly, we also examined whether participants gained insight into the composite nature of
the words by analyzing the post-experimental questionnaire. Participants. were considered to
have gained insight if, when asked whether any unexpected patterns connecting the words in the
exposure and testing sessions were observed, they indicated that they noticed some words from
the exposure session were combined in the testing session. Fisher’s exact test was conducted to

examine if the number of participants gaining insight differed between groups.

3. Results

3.1. Task Performance

We first verified that the groups did not differ in overall accuracy when performing the exposure
session. A one-way analysis of variance showed that all groups performed the task with high
accuracy (M =0.92, M =0.91, M = 0.87, for the Sleep, Wake-Delayed and Wake-Immediate
groups, respectively) with no statistically significant differences between them (F(2,103) =1.14,
p=0.32).

Next, we examined the expression of false composite memories during testing. Mean raw
confidence levels for all groups and conditions are presented in Table 2. To analyze the effect of
sleep, we compared participants’ sensitivity to old versus new words by building ROC curves for
the main categories of new words (Composite, Split and Novel; see Supplementary Fig. S1A)
and calculating the AUC as the sensitivity measure. Means and standard errors of the AUC are
presented in Fig. 2C. A marginal linear model comparing the groups showed a significant main
effect of Condition (F(2,264) = 8.51, p < 0.001) and a significant interaction between Group and
Condition (F(4,264) = 2.60, p = 0.036). Following the significant interaction, Sidak-holm
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corrected pairwise comparisons within each group showed that for the Sleep group, the
Composite condition yielded a significantly lower sensitivity than either the Split (#(264) = 4.21,
p <0.001) or the Novel (#(264) = 4.46, p < 0.001) condition, whereas there was no difference
between the Split and the Novel conditions (p = 0.29). In contrast, none of the pairwise
comparisons were significant for any of the wake groups (all p’s > 0.21). Comparisons of the
groups within each condition showed that for the Composite condition, the Sleep group
displayed a significantly lower sensitivity than the Wake-Delayed group (#(264) =283 ,p =
0.015) and a similar trend when compared to the Wake-Immediate group (#(264) =2.01 ,p =
0.09), whereas the two wake groups did not differ from each other (»p = 0.231). In contrast, there
were no significant group differences for either the Split or the Novel conditions (all p’s > 0.58).
Since the two wake groups did not differ in the Composite condition, we followed up with an
independent t-test comparing the Sleep group in that condition‘to the two wake groups
combined. The analysis showed a significant difference, with the Sleep group exhibiting smaller
sensitivity than the combined wake group (#104)=2.59, p =0.011).

Having established the first predicted effect, we turned to examine whether the Forward
and Backward Composite conditions differed between sleep and wake. We ran a second
marginal model, identical to the first exeept that only the Forward and Backward Composite
conditions were included. Means and standard errors are presented in Fig. 2D. The analysis
showed a significant main effect of Group (F(2,176) = 3.39, p = 0.036), but neither Condition
nor the interaction between Condition and Group were significant (both p’s > 0.67). Pairwise
comparisons showed that across the two composite conditions, the Sleep group had a
significantly lower sensitivity that the Wake-Delayed group (#(264) =2.54 , p = 0.035), though
the difference between the Sleep and the Wake-Immediate groups did not reach statistical
significance ((¢(264) = 1.86 , p = 0.124), and neither did the difference between the two wake
groups (p = 0.309). Since the wake groups did not differ and only the main effect of Group was
significant, we followed up by comparing the Sleep group with the two wake groups combined,
across the two composite conditions. An independent t-test confirmed that the Sleep group
exhibited significantly smaller sensitivity than the combined wake group (#(104) =2.34 ,p =
0.021). To summarize, while sleep lowered the sensitivity to composite words overall, there was

no significant difference between the forward and backward composite words for any group.
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Finally, since the AUC, our measure of sensitivity to old versus new words, was
calculated by combining data from the Old condition with the other conditions, it did not provide
a baseline memory measure of how each of the groups performed. To examine whether the
groups differed on that respect, we compared their raw recognition confidence scores in the Old
condition. Neither a one-way ANOVA comparing the three groups nor an independent t-test
comparing the Sleep group to the combined wake control group yielded a significant effect (both

p’s>0.36).

3.2. Analysis of post-experimental questionnaires

We compared how many participants in each group became aware of the presence of composite
words in the testing session. We found that only 3 participants in the Sleep group and 4 in each
of the Wake control groups (8.6%, 11.1%, and 11.4% for the Sleep, Wake-Delayed, and the
Wake-Immediate groups, respectively) gained such insight, with nearly all of them also able to
give at least one example of a composite word. Fischet’s exact test showed that the groups did

not differ on this aspect (p = 1.0)

3.3. Associations between Sleep Physiology and Task Performance

Sleep parameters of interest were extracted as described in Methods. These included the percent
of time spent in SWS, SO amplitude, sleep spindle density and power, and SO-Spindle coupling
phase and strength. For the SO-spindle analysis, we ran the Rayleigh test for each participant to
examine whether the distribution of instantaneous SO phases when peak spindle amplitudes
occur is significantly different from uniformity. We found that for 27 out of the 29 participants
with available data, the distribution was significantly different from uniform (p < 0.05),
replicating conclusions from previous studies about the existence of a mechanism at play that
maintains coupling precision between spindles and SOs (Schreiner et al., 2021; Helfrich et al.,
2018; Staresina et al., 2015). Fig. 3A displays the grand average EEG signal across all SO-
spindle events, time-locked to the spindle peak amplitude (black line), together with the
corresponding grand average of the same segment filtered in the SO band (blue line). Mean
preferred phase was -69.41° + 27.94°, with all preferred angles falling within the [0 180] range,

and the mean vector length corresponding to the mean preferred angle was 0.88 (Fig. 3B).
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3.3.1. Analysis of Sleep Parameters and AUC Scores

To examine the relations between sleep physiology and behavioral performance in our
experiment, we first calculated the pairwise correlations among all sleep parameters of interest
and confirmed that none were highly correlated with each other (max|r| = 0.38; Fig. 3C),
indicating that multicollinearity is unlikely to substantially affect the results (cf. Dormann et al.,
2013). We then ran multiple regression models for the AUC scores of participants in the Sleep
group in each main experimental condition (Composite, Split and Novel; significance corrected
for 3 multiple comparisons using Holm-Sidak) with the sleep parameters as predictors. Fig. 4
(upper three rows) and Table 3 display the results.

The regression model was significant for the Composite condition, (F(6,21) = 4.45,
uncorrected p = 0.005), with effects driven by a negative correlation with the percent of time
spent in SWS (S =-0.391, p = 0.002), a marginally significantnegative correlation with SO
amplitude (S =-0.004, p = 0.067), and a positive correlation with spindle power (f =0.343, p =
0.003). For the Novel condition, the model was significant as well (F(6, 21) = 3.79, uncorrected
p =0.01), with effects driven by a negative correlation with SO amplitude (f = -0.005, p =
0.017) and a marginally significant negative correlation with SWS percent (f =-0.221, p =
0.077). The model did not reach significance for the Split condition (uncorrected p = 0.056),
though inspection of the individual factors again showed negative associations with SWS and SO
amplitude (Table 3). To follow up.on the significant effect for the composite words, we reran the
model separately for the AUC scores of the Forward and Backward Composite conditions
(significance corrected-for 2. multiple comparisons). Table 4 presents the results. We found that
for the Forward condition, the model was significant (F(6, 21) = 3.39, uncorrected p = 0.017),
driven, as in the overall Composite condition, by a negative correlation with SWS percent (S =
-0.47;p.= 0.006) and a marginally significant negative correlation with SO amplitude (f =
-0.005, p = 0.075), as well as a positive correlation with spindle power (f = 0.509, p = 0.002).
For the backward condition, the model was not significant (uncorrected p = 0.135). To follow up
on the different results between the Forward and Backward conditions, we then compared the
two directly. To that end, we conducted a joint Wald test for the 2 significant predictors found in
the Forward model (SWS percent, spindle power). Results showed a marginal effect (y%(2) =
5.10, p = 0.078), indicating a potentially different influence of the two predictors for the Forward

and Backward conditions.
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To summarize, the regression models partially supported our hypothesis by showing that
greater percentage of time spent in SWS and higher amplitude of slow oscillations predict
reduced differentiability between real and false memories. In contrast, spindle power
unexpectedly showed the opposite effect, with higher power predicting better differentiability.
These correlations were evident for the Forward composite but not the Backward composite
condition when examined separately. In addition, contrary to our prediction, the SO amplitude

effect — and, to a lesser degree, the SWS effect — were also observed for non-composite words.

3.3.2. Analysis of Sleep Parameters and Raw Confidence Scores

Our previous analysis demonstrated the existence of various cortelations between AUC
scores and SWS-related physiological measures, some supporting our hypothesis and some
contradicting it. However, since AUC scores represent the ability to distinguish between
encountered and unencountered words, it remains unclearif these correlations reflected
associations with increased false memories, a decline in real memories, or both. Moreover, when
the same correlation emerges across both composite and non-composite conditions - as was the
case with the negative correlation of AUC and SO.amplitude — it could be a byproduct of a single
measure used to compute the AUC for all conditions, namely, the raw recognition confidence
scores for old words. To further clarify the sources of our effects, we reran the regression models
using the raw confidence scores of each word type (Forward, Backward, Split, Novel and Old,
correcting for 5 multiple comparisons) as the outcome variables. Results are present in Table 5
and Fig. 4 (bottom three rows).

We found that for the Old condition, the model was significant (F(6, 21) = 4.96,
uncorrected p =0.003), with effects driven by a negative correlation with SO amplitude (5 = -
0.029, p = 0.005). The model was also significant for the Forward composite condition (F(6, 21)
= 3.68, uncorrected p = 0.012), with effects driven by a positive correlation with SWS percent
(8 =1.979, p = 0.045) and a negative correlation with spindle power (f = -2.658, p = 0.006), as
well as a negative correlation with SO-Spindle coupling phase (f =-1.161, p =0.001). There
were no significant effects for the Backward, Split or Novel conditions (all uncorrected p’s >
0.75). Comparing the Forward and Backward regression models directly, a joint Wald test for the
3 significant predictors (SWS percent, spindle power, SO-spindle coupling phase) yielded a
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significant effect (y2(3) = 8.24, p = 0.041), suggesting they influenced the two conditions
differently.

To summarize, the results suggest that the correlation between AUC scores and SO
amplitude across the composite and non-composite conditions was likely driven by responses to
the old words. In contrast, the correlations with SWS and spindle power in the Forward
condition, observed both using the AUC scores and the raw confidence scores, were driven by
the responses to the forward composite words (notice that the direction of correlations with
confidence scores of composite words is consistent with correlations in the opposite direction
with the corresponding AUC scores). In addition, the analysis of the raw confidence scores
revealed a contribution of the SO-Spindle coupling phase: The closer the peak spindle amplitude
got to alignment with the peak SO phase, the less participants erroneously recognized forward
composite words as words they have seen before (see color illustration for the Forward

Composite condition in Fig. 3B)

4. Discussion

Our findings in this study can be summarized as follows: (a) an afternoon nap contributes to the
formation of false composite memories; sleep, compared to wake, enhances the false recognition
of composite words when they are comprised of shorter word components presented in temporal
proximity prior to sleep; (b) the otrder of presentation of the word components prior to sleep does
not modulate the effect; (c) the percentage of time spent in SWS, the power of sleep spindles and
the coupling phase between spindles and slow waves during the nap mitigate the effect,
particularly when the word components are presented in the forward direction that fits their
composite presentation)after sleep. Higher proportion of SWS predicts more false memories,
whereas greater spindle power and better SO-spindle alignment predict fewer false memories; (d)
SO amplitude is associated with the weakening of real memories of words presented prior to

sleep. In the following we discuss each of these results and suggest future directions to explore.

4.1. Behavioral Effects
Our behavioral results are mostly consistent with the predictions of the temporal scaffolding
hypothesis (Lerner & Gluck, 2019; Lerner, 2017a; 2017b), which suggests that temporally

compressed replay of an encoded memory sequence during SWS could result in the composition
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of the sequence into a unitary memory if that memory can be seen as a single entity (as in the
case of two words forming together a third, new word). Importantly, there was no difference
between the two wake control groups tested either before or after the intermission, supporting the
interpretation that sleep was actively changing memory representations rather than simply
preventing a change that would have occurred anyway with time. The hypothesis further
predicted a stronger effect for a forward presentation of the sequence compared to a backward
presentation due to a bias towards forward replay during SWS (Wikenheiser et al., 2013). This
effect was not observed behaviorally but was supported at the physiological level, where
composite memories in the Forward condition displayed stronger associations with the sleep
metrics compared to the Backward condition. Our results allude to sevetal potential explanations
for the discrepancy between the behavioral and physiological findings.- One possibility is that our
experimental manipulation was not strong enough to elicit a detectable behavioral difference
between the Forward and Backward conditions. This interpretation is supported by a non-
significant but numerical difference between the two conditions, evident in the raw confidence
scores of the sleep group (see Table 2). Another possibility is that several sleep mechanisms
involved in the consolidation of forward composite words counteracted one another: Whereas
SWS amount appeared to shift AUC scores of the Forward condition in one direction, spindle
amplitude shifted them in the opposite direction (Table 3). The combination of these effects may
therefore have resulted in the'\Forward and Backward conditions exhibiting similar behavioral
scores. Nevertheless, both explanations leave open the question of why AUC scores for the
Backward condition were lower than for the Split and Novel conditions in the sleep group.
Ultimately, additional experiments may be necessary to clarify this effect, potentially reflecting a

sleep-dependent mechanism that is yet unidentified.

4.2. Slow Wayve Sleep Metrics as Predictors of Behavior

4.2.1. Slow Wave Metrics and False Memories

The associations between our behavioral findings and the physiological measures of sleep
confirmed the involvement of replay-related EEG markers in the process, although in a more
nuanced way than originally hypothesized. Whereas the predicted positive correlation between
false composite memories and slow wave-related parameters was identified for the percentage of

time spent in SWS, spindle power and spindle-SO coupling exhibited the opposite effect. These
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relationships suggest a more complex mechanism at play, where slow waves and spindles may
not always act in concert when contributing to memory consolidation. One possible
interpretation of this process is that spindles may have been involved in a form of compensatory
mechanism, whereby a tendency to consolidate illusory compositions during slow wave sleep
was countered by stronger spindle activity, particularly when they were coupled with slow
waves. Spindles and spindle-SO coupling are often thought to reflect a hippocampal-cortical
dialogue during which hippocampal memories are replayed, reorganized and transferred to the
cortex for long-term storage (Rasch & Born, 2013). However, some models suggest that early
forms of reorganization and regularities extraction are already present in the hippocampus itself
(Gluck & Myers, 1993; Sucevic & Schapiro, 2023). Considering these models, our results could
be explained by assuming: (a) the tendency to form false composite memories occurs within the
hippocampus during SWS replay; and (b) stronger spindle activity refleets the disentanglement
of those composite memories into their original separate components during the transfer. Such
scenario would predict a positive correlation between false memories and the time spent in SWS
but a negative correlation with spindle-related metrics. This possibility is strengthened by the
fact that the physiological associations were mote.pronounced in the Forward Composite
condition than the Backward condition, further aligning them with the known natural bias
towards forward replay during sleep (Wikenheiser et al., 2013). Nevertheless, more evidence is
needed to support this hypothesis —for example, by showing a positive correlation between false
composite memories and direct indicators of hippocampal replay like sharp wave-ripples
(Roumis & Frank, 2015), alongside a negative correlation with cortical-based measures like
spindles. Potentially, this prediction could be tested in future experiments that allow measuring
hippocampal activity directly, such as animal studies using an adapted version of the current

task.

4.2.2. Slow Wave Metrics and Real Memories

Our second finding concerning the association between sleep physiology and behavioral
measurements was that raw recognition confidence scores for old words were negatively
correlated with the amplitude of SO, signifying a degradation in true memory as the amplitude
increased in magnitude. This finding may seem surprising given that no significant difference

was found between the sleep and wake groups in the raw recognition scores of old words, and, in
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addition, most previous sleep studies suggest SWS contributes to the consolidation of memorized
words rather than to their weakening (Plihal & Born, 1997; Rasch & Born, 2013). However, a
very similar finding to ours was previously reported for false memories using the DRM
paradigm. To reiterate, in the DRM task participants are exposed to semantically related words
and are later tested on how well they remember these words as well as on whether they falsely
remember the unseen theme word linking them. Utilizing this paradigm in a study involving
sleep in between exposure and testing, Payne and colleagues (2009) found: (a) a negative
correlation between the time spent in SWS during a nap and performance on studied
(“veridical”) words; (b) no difference in the overall performance on veridical words between the
sleep and wake groups; and (c) an increased rate of false memories in the sleep group (see also
Newbury & Monaghan, 2019, for a meta-analysis showing no overall difference in veridical
memory performance between sleep and wake in the DRM paradigm). These findings were then
replicated by the same group, this time also detecting a negative correlation between SWS and
false memories (Pardilla-Delgado & Payne, 2017) that echoed previous results in older adults
(Lo et al., 2014).

According to Payne and Colleagues, suchia negative correlation with SWS may reflect
the involvement of the semantic system in memorization during sleep as it tries to efficiently
consolidate a list of words while facing the possibility to extract gist information (Payne et al.,
2009). Payne and Colleaguessuggested that in such circumstances, the system may be
encouraged to encode words-based on their semantic relatedness rather than the more contextual,
episodic-based memorization that SWS is known to enhance. Therefore, participants engaging in
more SWS would, unfavorably, over-rely on the less efficient, non-semantic way to encode the
DRM stimuli, leading to poorer recollection of veridical and thematic memories alike. Indeed, a
tendency of sleep to prioritize abstraction processes at the expense of simple memory
consolidationiand vice versa has been documented in several previous studies using a variety of
different behavioral paradigms (Alger & Payne, 2016; Davidson et al., 2018; Gomez et al., 2006;
Lerner et al., 2021). Since our study, like the DRM paradigm, uses word stimuli to test memory,
the current findings of SO Amplitude being negatively correlated with memory performance for
old words and spindle parameters being negatively correlated with false composite words may
reflect a similar process, by which the system invests resources in SWS-dependent episodic

memorization at the expense of semantic encoding. Payne and colleagues did not examine any
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associations between their behavioral measures and more particular SWS metrics such as sleep
spindles, SO, or spindle-SO coupling, let alone their combination; therefore, it is not clear if false
memories in the DRM paradigm would also reveal a positive relation to some SWS-related
parameters if a more robust analysis is conducted. This question would be interesting to examine

in future studies, with potential theoretical implications.

4.3. Relation to Other False Memory Paradigms

Finally, our composite words task bears some resemblance to another false memory paradigm,
demonstrating “conjunction” errors (Underwood & Zimmerman, 1973). In these studies;
participants are first exposed to words like heartburn and drumbeat and then undergo a memory
test where they tend to falsely recognize conjunction words that contain.parts of the exposed
items, like heartbeat. There are, however, some important differences between this paradigm and
ours, hinting that different mechanisms are at play. First, semantic relationships between exposed
and tested items increase conjunction errors (Leding et al., 2007), whereas no such semantic
relations existed in our stimuli. Second, theoretical accounts of conjunction errors point to the
contribution of familiarity (Jones et al., 2001), while familiarity per se cannot explain our results
given that we found no difference between the Split and Novel conditions. Finally, our results
highlight the importance of temporal proximity during exposure to component words whereas no
such proximity is required for conjunction errors. Nevertheless, future studies might examine
whether sleep also affects the formation of conjunction errors and compare it to the effects found

here and in the DRM paradigm.

5. Conclusions

The current study brought evidence for a new form of false memories enhanced by sleep. Unlike
previous studies using the DRM paradigm that showed sleep may increase false memories with
semantic relations to studied material, the type of false memories demonstrated here were linked
to previously presented stimuli only through a low-level temporal association, and their sleep-
dependent facilitation is predicted by the temporal scaffolding hypothesis based on the presumed
time-compression of memory replay during non-REM sleep. Indeed, as predicted, we found
evidence linking the new effect to slow wave sleep, particularly when items were presented in

the forward direction, consistent with the known bias towards forward memory replay during
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sleep. Nevertheless, the linkage between sleep physiology and behavioral effects was more
nuanced than predicted, with additional effects showing negative relations between sleep
parameters and both false composite and veridical memories, potentially reflecting the
involvement of semantic encoding in the process not unlike those present in the DRM paradigm.

The full mechanism contributing to these effects remains to be further elucidated.
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Tables

Table 1. Demographic and Sleep Data of Participants (N = 106)

Variable Sleep Group Wake-Delayed Group Wake-Immediate Group
Number of Subjects N=35 N =36 N=35
Gender (M / F) 15/20 14/22 15/20
Age 19.54 +1.93 19.56 + 1.98 19.86+1.44
Years of Education 14.11+1.19 13.94 + 1.50 14.50.+ 1.43
TST (min) 80.88 +£25.67 - -
N1 (min) 9.65+6.24 - -

% N1 1428 £12.18 - -
N2 (min) 42.62 +16.12 - -

% N2 54.66 = 15.61 - -
N3 (min) 16.57 £17.36 - -

% N3 17.50 +16.93 - -
REM (min) 12.05+10.97 - -

% REM 13.56 + 12.21 - -

Demographic data of participants based on group. Sleep:parameters presented only for the Sleep
group. Numbers above represent Mean + Standard Deviation. TST = total sleep time. N1 =
minutes spent in stage 1 sleep. % N1 = percentage of time spent in stage 1 sleep out of total sleep
time. N2 = minutes spent in stage 2 sleep. % N2 = percentage of time spent in stage 2 sleep out
of total sleep time. N3 = minutes spent in SWS. % N3 = percentage of time spent in SWS out of
total sleep time. REM = minutes spent in Rapid Eye Movement sleep. % REM = percentage of

time spent in REM sleep out of total sleep time.
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Table 2. Means and standard deviations of the confidence levels for each group and condition

Sleep Wake-Delayed Wake-Immediate
Composite 3.55(0.61) 3.38 (0.69) 3.29 (0.48)
Composite - Forward 3.62 (0.86) 3.32 (0.84) 3.34 (0.61)
Composite - Backward 3.49 (0.83) 3.44 (0.93) 3.25(0.68)
Split 3.28 (0.87) 3.42 (0.79) 3.40 (1.06)
Novel 3.06 (0.79) 3.07 (0.92) 3.11 (0.97)
Old 4.03 (0.58) 4.22 (0.64) 4.07 (0.54)

Higher values represent higher confidence that a word has been seen before.
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Table 3. Multiple regression for AUC scores in each condition using the sleep predictors

Composite Split Novel
Model fit F(6,21) =4.4468 F(6,21)=2.4820 F(6,21) =3.7933
p=0.005,R°=0.4337 p=0.056,R*=0.2477 p=0.010, R’=0.3830
B p B P B P

Intercept 0.3043 0.2756 0.8472 0.0228 0.9270 0.0055
% SWS -0.3909 0.0016 -0.2735 0.0583 -0.2211 0.0767
SO Amplitude -0.0037 0.0674 -0.0004 0.0862 -0.0054 0.0170
Spindle Density -0.0044 0.7966 -0.0180 0.4071 -0.0039 0.8369
Spindle Power 0.3426 0.0026 0.1179 0.3655 0.1360 0.2335
Coupling Phase 0.0106 0.7704 -0.0218 0.6396 -0.0489 0.2299

Coupling Strength -0.0006 0.9637 0.1327 0.4138 0.0135 0.9233

p values of the overall model fit are before correction for multiple comparisons. Significant or
marginally significant effects of predictors (not including intercept) are matked in grey. Adjusted
R’ values are presented. % SWS = Percent of time spent in slow wave sleep; SO = Slow
Oscillations.
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Table 4. Multiple regression for AUC scores in the Composite Forward and Backward conditions

Forward Backward
F(6,21) = 3.3884 F(6,21) = 1.7044
Model fit p=0017,R2=0.3467 p=0.169, R? = 0.1353
B )4 B P
Intercept 0.1934 0.6235 0.7020 0.0846
% SWS -0.4748 0.0056  -0.2080 0.1899
SO Amplitude -0.0051 0.0746  -0.0034 0.2217
Spindle Density -0.0166 0.4959  -0.0020 0.9330
Spindle Power 0.5092 0.0019 0.1113 0.4460
Coupling Phase 0.0865 0.1057 -0.0670 0:2042

Coupling Strength 0.0738 0.6846 -0.1132 0.5339

p values of the overall model fit are presented before correction for multiple comparisons.
Significant or marginally significant effects of predictors (not including intercept) are marked in
grey. Adjusted R’ values are presented. % SWS = Percent of time spent in slow wave sleep; SO
= Slow Oscillations.
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Table 5. Multiple regression for raw recognition scores using SO-Spindle coupling as predictors

Forward Backward Split Novel Old

Model F(6,21)=3.68 F(6,21)=0.09 F(6,21)=0.56 F(6,21)=0.13 F(6,21)=4.96

Fit p=0.012 p=0.997 p=0.751 p=0.991 p=0.003

R’=0.374 R’=-0.254 R?=-0.106 R?=-0.240 R’ =0.468

B p B p B p B p B p
Intercept 7.30  0.005 4.13 0.190 3.19 0291 3.17 0273 6.02 <0.001
%SWS 198 0.045 0.53 0.662 087 0464 0.529 0.640 -0.90 0.101
SOamp 0.01 0.719 -0.00 0.871 -0.00 0.876 0.00 0.844 -0.03° 0.005
Sp.dns 0.12 0400 0.12 0.545 0.19 0303 0.10 0.564 -0.03 0.810
Sp.pow -2.66 0.005 -0.29 0.801 0.04 0.969 -0.30 0.774 /0.54 " 0.285
Cpl.phs -1.16 0.001 -0.06 0.884 -0.35 0379 -0.12 0.743"-0.28. 0.123
Cpl.str  -095 039 032 0.820 -1.12 0419 -040 0.762 -0.05 .0.933

p values of the overall model fit are presented before correction for multiple comparisons.

Significant effects of predictors (not including intercept) are marked.in grey. Adjusted R’ values
are presented. % SWS = Percent of time spent in slow wave sleep; SO-amp = Slow Oscillations
amplitude; Sp. dns = spindle density; Sp. Pow = spindle power; Cpl. Phs.= Spindle-SO coupling
phase; Cpl. Str = Spindle-SO coupling strength.
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Figures

A Exposure B
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Composite Sp|it old Novel carpet How confident word is
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carpet margin kidnap beyond flower \|

1000ms
Forward Backward

Fig. 1. Experimental design. A) Types of Trials in the exposure and testing Sessions. Top row
shows the four types of trials administered to participants during the exposure session: Forward,
Backward, Split, and Novel. Forward, Backward and Split conditions were counterbalanced
across participants. Bottom image shows the four types of trials administered during the testing
session: Composite (consisting of word compositions from either the Forward or Backward trials
in the exposure session) Split (consisting of word compositions from the Split trials in the
exposure session), Old (any non-composite words appearing during exposure), and Novel (words
not seen during exposure). B) Example of trial progression for the Exposure (left) and Testing
(right) sessions. During exposure, participants indicated if one or both words of a presented pair
contained or did not contain the letter ‘e’. During testing, participants indicated how confident
they are that a presented word was seen earlier during the exposure session. C) Experimental
procedure. The Sleep group performed the exposure session during early afternoon, then had an
opportunity.to nap for 2 hours, followed by the testing session. The Wake-Delayed group had a
similar schedule, only they were not allowed to nap during the 2-hour interval. The Wake-
Immediate group performed the exposure session at a similar time, and the testing session 15

minutes afterwards without a long interval in between.

36



Predicted Ability to Diffrentiate New from Old Memories
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Fig. 2. Main behavioral results of the experiment compared to predicted results. A) Illustration of
the predicted differences in the ability to differentiate new from old words between the sleep and
wake control groups for each of the main conditions (arbitrary units). B) Same as A, for the
Forward versus Backward Composite conditions. C) Empirical AUC scores of all groups for the
main experimental conditions. D) Same as C, for the Forward versus Backward Composite

conditions. *** p <0.001; ** p=0.01; * p =0.02; n.s., not significant.
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Fig. 3. A) Grand average of EEG central channels across all SO-spindle events and participants,
time-locked to spindle peak amplitude (black), together with the same segments filtered in the
SO band (blue). B) Preferred SO phase at peak spindle amplitude across participants. Color
represents the average raw confidence score in the Forward Compeosite condition per participant,
from low (yellow) to high (dark red). C) Pairwise correlations between the physiological sleep
predictors. Blue/green Intensity of each cell represents the value of the correlation (1 — Green, -1
— blue) with the corresponding significance level indicated at the center. % SWS = Percent of
time spent in slow wave sleep; SO Amp. = Slow oscillations amplitude; Sp. Density = spindle
density; Sp. Power = spindle power; Cpl. Phase = SO-spindle coupling phase; Cpl. Strength =
SO-spindle coupling strength.
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corresponding slope are displayed for significant correlations.
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Supplementary Methods

Composite words used in the study

Supplementary Table S1. Composite words used in the study, organized by list.

List 1 List 2 List 3

Word Frequency Word Frequency Word Frequency
ashram 0.3 campus 40.74 convex 0.57
canvas 13.75 carpet 15.36 dampen 2.38
hamper 4.38 curfew 2.82 donkey 3.81
haptic 0.25 format 25.25 kidnap 9.47
pallet 1.56 parrot 3.96 margin 22.57
refuse 73.09 warden 4.33 profit 54.06
Mean: 15.56 15.41 15.48

Frequency in occurrences/million.

Supplementary Results
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Supplementary Fig. S1. A) Average ROC curves for each condition and group. B Pairwise

correlations between extended set of sleep parameters. SWS = Slow Wave Sleep. REM = Rapid
Eye Movement; SO = Slow Oscillations; SWA = Slow Wave Activity; Amp. = Amplitude; Sp.

= Spindles. Cpl = Coupling.
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Stepwise Regression Across Extended Set of Sleep Parameters

In our main regression analysis of sleep physiology and behavior, predictors were chosen for
their well-known role as indices of memory consolidation during slow wave sleep. However,
there are other sleep parameters that have been used in the literature in relation with memory
consolidation (e.g., Kumral et al., 2023). Many of these parameters are highly correlated with
each other (e.g., [r[>0.7; See Fig S1B), preventing their inclusion in one single model due to
multicollinearity concerns (Dormann et al., 2013). Nevertheless, it is important to.verify that the
main results are not dependent on a particular set of selected parameters. To that end, we
complemented our multiple regression analyses by employing an alternative analytic approach to
identify which predictors out of a larger set of potentially relevant parameters should be

preferred when accounting for the behavioral data.

Methods: We ran a stepwise regression analysis for each word condition presented in the main
text to select factors that produce the best fit from a model selection perspective. Each of these
analyses started with a default intercept-only model. At every step, variables were selected based
on p-values of the F-statistics, with p <.05 being the criterion to add a term to the model and p
>.10 being the criterion to remove an included term from the model. The set of potential
parameters included all the original variables analyzed in the main text (%SWS, SO amplitude,
spindle density, spindle power and SO-spindle coupling phase and strength), as well as the raw
time spent in the main sleep-stages (N2, SWS, REM), additional slow-wave parameters (slow-
wave activity (SWA), SO slope), and additional spindle parameters (spindle count, spindle
amplitude). Time in each sleep stage was based on sleep scoring, and SO slope and spindle count
and amplitude wete extracted using the same YASA algorithm described in the main text. SWA
was calculated following the method presented by Wilhelm and colleagues (2011): The raw data
from the EEG derivations of each participant underwent high-pass (0.1Hz) and low-pass (30Hz)
filtering and cleaned using Independent Component Analysis. Then, for all time periods spent
during either N2 or SWS, the data were segmented into 10min consecutive time bin (we used 10
instead of 20 minutes as in the original paper because we measured naps rather than overnight
sleep, resulting in substantially shorter recordings) and for each bin we extracted the overall
power in the SO and delta band (0.5-4Hz). We then calculated the median value over these bins

for each derivation, and then the median over derivations from the central and frontal areas (C4-
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M1, C3-M2, F1-M1, F2-M2; we used medians rather than means to restrict occasional

distortions resulting from channels with high non-biological noise, for example due to movement

that was not sufficiently cleaned). This value served as the SWA for each participant. All

processing related to SWA was executed with Matlab’s EEGLAB and the signal processing

toolbox, and the stepwise procedure was accomplished with the function stepwiselm in Matlab

2024b.

Results:

For the main AUC scores, results were as follows:

Composite condition: The model was significant (F(3, 24) = 4.74, p = 0.039, Adjusted R’

= 0.500) with %SWS and SO amplitude retained as predictors.with a negative association
and spindle power retained as a predictor with a positive association.

Split condition: The model was significant (F(1;:26) = 7.79, p = 0.009, Adjusted R® =

0.201) with SO amplitude retained as a sole predictor with a negative association.

Novel condition: The model was significant (F(1;26) = 13.87, p < 0.001, Adjusted R’ =

0.323) with SO amplitude retained as'a sole predictor with a negative association.

For the Forward and Backward composite AUC scores, results were as follows:

Forward condition: The model was significant (F(2, 25) = 6.87, p = 0.004, Adjusted R’ =

0.303) with %SWS and SO amplitude retained as predictors with a negative association
and spindle power retained as a predictor with a positive association.

Backward condition: The model was significant (F(1, 26) = 6.05, p = 0.021, Adjusted R’

= 0.158) with SO slope retained as a sole predictor with a negative association.

For the raw confidence sores, results were as follows:

Forward condition: The model was significant (F(3, 24) = 10.4, p < 0.001, Adjusted R* =

0.510) with SWS retained as a predictor with a positive association and spindle amplitude

and SO-spindle coupling phase retained as a predictors with a negative association.

Backward condition: no predictors added, default intercept-only model retained.
Split condition: no predictors added, default intercept-only model retained.
Novel condition: no predictors added, default intercept-only model retained.

Old condition: The model was significant (F(1, 26) = 22.6, p <0.001, Adjusted R’ = 0.444)

with SO slope retained as a sole predictor with a negative association.
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Overall, results from the stepwise regression analysis closely mirrored findings from the multiple
regression models (compare with Tables 2—4 in the main text) with differences mostly limited to
substitutions among conceptually similar and highly correlated parameters (SWS and %SWS;
SO amplitude and SO slope; spindle amplitude and spindle power; see Fig S1B), confirming the

robustness of our main findings.
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