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A Peculiar Phenomenon and its Potential Explanation in the ATP Tennis Tour 

Finals for Singles 

 

Abstract 

The ATP finals is the concluding tournament of the tennis season since its initiation over 50 

years ago. It features the 8 best players of that year and is often considered to be the most 

prestigious event in the sport other than the 4 grand slams. Unlike any other professional tennis 

tournament, it includes a round-robin stage where all players in a group compete against each 

other, making it a unique testbed for examining performance under forgiving conditions, where 

losing does not immediately result in elimination. Analysis of the distribution of final group 

standings in the ATP Finals for singles from 1972-2021 reveals a surprising pattern, where one 

of the possible and seemingly likely outcomes almost never materializes. The present study uses 

a model-free, optimization approach to account for this distinctive phenomenon by calculating 

what match winning probabilities between players in a group can lead to the observed 

distribution. Results show that the only way to explain the empirical findings is through a 

“paradoxical” balance of power where the best player in a group shows a vulnerability against 

the weakest player. We discuss the possible mechanisms underlying this result and their 

implications for match prediction, bettors, and tournament organization. 
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1. Introduction 

The use of data analytics in professional tennis has become increasingly more common over the 

last decade. More and more players are taking advantage of advanced statistical analyses to 

improve their game, whereas media outlets, helped by software giants (e.g. I.B.M) use the data to 

present the audience with enriched analysis of matches in real time (Larson and Smith 2018). 

These analyses, however, have been mostly limited to the development of models and metrics to 

describe broad aspects of the game, such as predicting the outcomes of tennis matches (e.g., 

Ingram 2019; Klaassen and Magnus 2003; McHale and Morton 2011; Spanias and Knottenbelt 

2013; see review by Kovalchik 2016), revising ranking systems (e.g., Bozóki, Csató, and Temesi 

2016). ; Irons, Buckley, and Paulden 2014), or settling popular disputes with interest to pundits 

and general audiences (e.g., Radicchi 2012). While a few studies have examined more specific 

aspects, such as success rates of elite players in elite tournaments (e.g. Gallagher, Frisoli, and 

Luby 2021; Leitner, Zeileis, and Hornik 2009; Wei, Lucey, Morgan, and Sridharan 2013), their 

approach remained top-down: developing a model and then applying it to a particular dataset 

chosen for its prominent status and visibility.   

Much less common are bottom-up approaches, which begin with identifying local, unique 

statistical patterns in the field, and then examine whether they could be accounted for by 

mechanisms that have broader implications on the sport. The current work attempts to illuminate 

such a unique pattern appearing in the ATP Finals tennis tournament for singles, explain its 

possible sources through a “model-free” statistical approach, and draw conclusions with possible 

interest to players, ATP officials, tennis pundits and betting agencies. To the best of our 

knowledge, this is also the first academic attempt devoted specifically to identifying and 

explaining statistical patterns in the ATP Finals in tennis. 



 

The ATP finals (please see https://www.nittoatpfinals.com/en/heritage/history) is the 

concluding tournament of men’s tennis calendarial year, organized by the Association of 

Professional Tennis (ATP). It has been taking place regularly since 1970, usually during 

November (and, at some years in its first decade, during January of the following year), and 

features the 8 players with the highest seeds in the ATP ranking based on performance during the 

season. Given that only the players with the best results of that year are allowed to participate, it 

is often considered to be the most prestigious tennis tournament other than the four Grand slams. 

The ATP Finals are distinct from all other ATP-tour tennis tournaments in that they are 

not entirely designed as a knockout system where every match ends up in the elimination of the 

losing player. Instead, it employs a round-robin stage where the 8 players are organized into two 

4-player groups, with each player playing against all other three in his group. Groupings are 

based on the players’ seeding in an attempt to keep each group at a roughly similar level. As 

such, the number 1 and 2 seeds will find themselves in opposite groups, as will the number 3 and 

4 seeds, 5 and 6, etc. The two players ending up on top of each group by the end of the round-

robin stage then proceed to a regular knockout stage with semifinals (in which each group’s 

winner faces the runner-up of the other group), followed by a final. Thus, during the group stage, 

a player may lose a match – or even two – and still remain in the tournament. The two winners of 

each group are determined by ordering their performance based on the number of wins, and, in 

case of a tie, based on a cascade of additional measures, including number of games played 

(mostly relevant in cases when a player skips an entire match due to injury and needs to be 

substituted), sets won, head-to-head results and so on (see https://www.nittoatpfinals.com 

/en/event/rules-and-format). Over the years, there have been several variations from this setup, 

particularly during the first decade and a half of the tournament’s life. For example, in 1970-



 

1971 the tournament only had a group stage with one single group and no knockout stage 

whereas during 1982-1985 it was conducted as a regular knockout tournament from start to 

finish (https://www.nittoatpfinals.com/en/heritage/results-1970-1999); the finals have sometimes 

been played as best-of-five sets rather than best-of-three like the rest of the tournament 

(https://www.nittoatpfinals.com/en/heritage/results-2000-2021) ; the allocation of players to 

groups based on seedings was not followed in the first few years; and the specific cascade of 

tiebreak rules determining the ranking of each group in case players end up with the same 

number of wins has seen some minor variations; but overall, the format has been quite stable for 

over half a century of the tournament’s existence. 

Our main concern in the current study is the peculiar statistical distribution of the final 

standings of the group stage in the ATP Finals in singles, particularly as they relate to the 

number of wins/losses. Since all 4 players play against each other for a total of 6 matches and 

there is always one winner and one loser in a tennis match, the final standings can result in only 

one of four outcomes1:  

(i) One player winning all of his matches, one player winning two matches, one player winning 

one match and one player winning none (3-2-1-0). 

(ii) Two players winning two matches and two players winning one match (2-2-1-1). 

(iii) Three players winning two matches and one player winning none (2-2-2-0). 

(iv) One player winning three matches whereas the other 3 winning one match each (3-1-1-1).  

The frequency of each of these outcomes could enlighten us about the balance of power 

between players in an ATP Finals group. For example, if we assume the (highly unlikely) 

scenario where all players are equally strong with each having a probability of exactly 0.5 to win 

 
1 Here, we disregard the (somewhat uncommon) situation where a player gets injured and is substituted by another 
player mid tournament, and treat it as if the same player was playing throughout. This is discussed later on. 



 

a match, it can be shown that the expected frequency distribution of the final standings over the 4 

possible outcomes will be [0.375 0.375 0.125 0.125]. In other words, it would be as likely to find 

a 3-2-1-0 and a 2-2-1-1 standings, with each occurring 3/8 of the time, and it would be as likely 

to find a 2-2-2-0 and a 3-1-1-1 standings, with each occurring 1/8 of the time.  

Naively, one would assume that each of the possible outcomes would be at least 

somewhat likely; however, when examining the standings over all groups across the years of the 

ATP Finals’ existence, we find a highly skewed distribution, with the fourth outcome (3-1-1-1) 

occurring in only 2 out of 92 cases, a frequency of merely 0.0217 (for comparison, in the ATP 

Finals for doubles, played in a similar format, no outcome occurs less than 0.085 of the time; and 

in the WTA Finals, the equivalent tournament in women’s tennis, all outcomes have frequencies 

above 0.105);. Having such a low probability for a seemingly reasonable scenario (especially 

given that the other scenario where one player wins 3 matches, 3-2-1-0, is very likely) deserves 

explanation, as it may defy expectations set not only before the beginning of proceedings but 

also while the tournament is already underway (with potential repercussions to betting patterns). 

The following study attempts to explain this finding by examining what balance of power among 

the players in a group, as expressed by their probabilities of winning a match against each other, 

could result in such a peculiar group standing distribution. 

 

2. Methods 

Data on all match results in the ATP finals for singles were extracted from the official ATP 

website (https://www.atptour.com/en/scores/results-archive). Relevant data included 46 out of 

the 53 years of the tournament’s existence (1972-1981 and 1986-2021), when it was played with 

a round robin stage that included two 4-player groups. In addition, when we needed to determine 



 

the exact order of matches played, information was extracted from the sports statistics website 

Flashscore (https://www.flashscore.com/).  

We begin the analysis by computing the frequency of each of the 4 possible outcomes of 

the group standings. Each tournament contributes two samples for the calculation (corresponding 

to the two groups in each year), resulting in 92 samples over 46 years. The resulting distribution 

was:  

𝑇"⃗  = [0.6739 0.2065 0.0978 0.0217]    (1) 

for the 3-2-1-0, 2-2-1-1, 2-2-2-0 and 3-1-1-1 outcomes, respectively. 𝑇"⃗  is thus considered as the 

empirical target distribution that we aim to explain in this study. 

Next, we characterize the results of a round-robin group by 𝑝, a vector with 6 values 

(p1…p6) representing the probabilities of a win by one player over another, which can be 

displayed in the following matrix form: 

   Losing player 

 

W
in

ni
ng

 p
la

ye
r 

 1 2 3 4 

 1  p1 p2 p3 

 2 1-p1  p4 p5 

 3 1-p2 1-p4  p6 

 4 1-p3 1-p5 1-p6  

 

We search for a value of 𝑝 that yields the target distribution of the group standings 

outcomes. For simplification, we assume that the results of each of the 6 matches taking place in 

an ATP Finals group in any year are independent of each other (i.e., each match depends on the 



 

relative contemporary strength of the players involved, but not on the results of the other matches 

in the group or any other results). While this is not necessarily the case, it is a reasonable 

approximation for which some support is given later on. Again for simplicity, we ignore 

instances where substitute players were used due to one or more players getting injured and 

forced to quit the tournament, and treat them like any other sample. Substitutions are an 

uncommon though not negligible phenomenon, occurring in 12 out of the 92 cases; however, 

they do not change the basic win-loss statistics we target in this study and our conclusions are 

valid even when discarding them from the calculations, therefore we report the results with all 

data included. Finally, note that our approach intentionally ignores seedings since our goal is to 

describe the patterns over all groups in the tournament’s history with no prior assumptions about 

likely results based on previous performance in a given year. Seedings are addressed only at one 

point when trying to estimate the stability of the statistics (see Results). 

To estimate 𝑝, we search for values of p1…p6 that yield a distribution of group standings 

𝜃(𝑝) that is as close as possible to the target distribution. We define the distance between the two 

distributions based on the Kullback-Leibler divergence (DKL; Kullback and Leibler 1951), which 

gets a value of 0 when the two distributions are identical, or a positive value when they are not.2 

This turned the calculation into an optimization problem, where our goal is to find �⃗�	that 

minimizes the objective function DKL:  

argmin
!⃗	

𝐷$% 0𝑇"⃗ ∥ 𝜃(�⃗�)2     (2) 

 
2 Similar results are achieved when using other objective functions to define the difference between the two 
distributions, such as sum squared difference, City block distance (the sum of absolute differences in each 
dimension), or the counterpart definition for Kullback-Leibler divergence,  𝐷!""𝜃(�⃗�) ∥ 𝑇*⃗ +. DKL was preferred 
because it more naturally captures similarities between distributions and thus requires fewer repetitions to 
effectively cover the parameter space. 



 

A small additional correction is applied to the objective function due to the inherent 

limitations on precision when using a finite amount of available data. Specifically, substantially 

different values of �⃗�	can bring the objective function close to 0 with only tiny disparities that do 

not meaningfully reflect a higher likelihood of one set of �⃗�	values over the other. To overcome 

this, we set a threshold for the difference between 𝜃(𝑝) and 𝑇"⃗ , below which the objective 

function was manually set to 0. The difference was computed as the City block distance (see 

footnote 2) between the two distributions, and the threshold was determined to be 1/92, the 

resolution of the target distribution (given 92 data points, a City block distance between 

𝜃(𝑝)	and the target distribution that is higher than 1/92 suggests that 𝜃(�⃗�)	is, in fact, closer to 

another target distribution that could have been produced with the same amount of data). 

Estimation of 𝑝 was performed numerically using the Nelder-Mead simplex algorithm. 

The optimization algorithm was run on Matlab 2021a (Mathworks) using the built-in fminsearch 

command. Since the algorithm’s output is sensitive to initial conditions, we repeated the 

optimization procedure 50,000 time, each time starting with a random initial condition 𝑝&, to 

assure a good coverage of the whole parameter space (additional runs did not change the results 

much further, nor did dividing the parameter space into an evenly spaced grid and setting the 

initial conditions to each of the grid edges). Other analyses described in Results, including 

Principal Component Analysis (PCA; Abdi and Williams 2010) and K-means clustering (Lloyd 

1982) were carried out using the Matlab commands pca, kmeans and kmeans_opt. 

 

3. Results 

We first tested our assumption that the group standings in tournaments are approximately 

independent of each other. To that end, we computed the joint probability distribution of the two 



 

group standings of each year (across the 46 years of available data), which includes 10 possible 

outcomes (all pair combinations of the 4 possible final standings, disregarding order; for 

example, one outcome is when the two groups in a single year both end with 3-2-1-0 standings; 

another is when one group ends with 3-2-1-0 and the other with 2-2-1-1; and so on). We then 

computed the expected frequency of the joint distribution had the two groups been equally and 

independently distributed, using the target probability T extracted from the full dataset. These 

two joint distributions are presented in Figure 1, ordered by the magnitude of the expected 

frequency of each outcome. 

As can be seen, with minor exceptions, the two distributions resemble each other 

considerably. This was confirmed using a chi-square goodness of fit test comparing the two 

distributions (multiplied by 46, the number of data points), yielding a non-significant value 

(𝜒'(3, N = 46) = 0.881, p = 0.83)3. While this test is not a strong guarantee that the groups are 

indeed independent (given the limited data), it serves as a sanity check to confirm that this 

approximation is not completely unrealistic. 

 

---- Place Figure 1 Here ---- 

 

We further evaluated the assumption of equality and independence of the final group 

standings each year by distinguishing the groups based on players’ seeding. While there is no a-

priori “correct” way to differentiate between the two groups of each year’s tournament as if 

 
3 Given that many of the possible outcomes yield an expected count that is smaller than 5, the minimum value 
required for reliably applying a chi-square test, we pooled together the 7 least-frequent outcomes into one big 
category, yielding a total of 4 outcome categories used in the statistical test. We also verified this result by running 
Fisher’s Exact test on the full 10 categories (since this test requires integers representing exact number of 
occurrences, the values of the expected frequency were rounded). The result showed, again, that the two 
distributions were not significantly different (p = 0.97). 



 

representing samples of two different variables, differentiating by seeding presents a natural and 

appealing option since in the majority of years, there has been a deliberate attempt to maintain a 

roughly equal draw by making the groups as equal as possible in respect to their seedings (as 

mentioned earlier in Introduction). We therefore differentiated between the groups that included 

the number 1 seed (“Group 1”) and the groups that included the number 2 seed (“Group 2”) and 

separately analyzed their performance over the years. Only 39 of the 46 years of available data 

were included in this analysis since for 7 years groups were not equaled based on seedings. We 

examined three measures of performance for each group: (1) group standings distribution over 

the years; (2) probability of the players in the group reaching the finals; and (3) probability of the 

group yielding the eventual winner of the tournament.  

We found that the distribution of group standings for Group 1 was [0.6667 0.1795 0.1026 

0.0512] whereas for Group 2 it was [0.6410 0.2308 0.1282 0]. Fisher’s exact test showed there 

was no significant difference between the two (p = 0.62), nor was there a difference between 

each of them and the target distribution 𝑇"⃗ calculated over the entire data (both p’s> 0.85). The 

probability of a player from one of the groups reaching the final was 0.526 for Group 1 and 

0.474 for Group 2, and the probability of a player from one group winning the tournament was 

0.538 and 0.462 for Group 1 and 2, respectively. Fisher’s exact test showed, again, that neither 

difference was significant (both p’s>0.78). In summary, when differentiating the groups based on 

seedings and separately evaluating each group’s performance over the years, we found that they 

exhibit roughly the same performance overall, with similar distributions of final group standings 

and success in yielding the finalists and winner of the tournament. 

Having verified that the preliminary assumptions of our approach are acceptable, we next 

moved to perform the main analysis of fitting a value for 𝑝, the vector of win probabilities of 



 

each match in a group, using the numerical optimization procedure described in Methods. The 

calculation produced a variety of solutions for 𝑝 reflecting a range of values that perfectly 

minimized the objective function (up to the possible precision point; see Methods). The range for 

each p1…p6 values across the 10,297 perfect solutions found is displayed in a color chart in 

Figure 2, corresponding to the winning-losing player matrix presented in Methods. Rows were 

ordered from the best player in the group (top) to the weakest player (bottom), and the range of 

values for each pi is displayed within the corresponding cell sorted from the highest (center) to 

lowest (edges). 

---- Place Figure 2 Here ---- 

 

As is evident in Figure 2, across the range of possible values, the strongest player in the 

group was always highly likely to win against the 2nd- and 3rd-best players (with probabilities 

that are predominantly between 0.85-1), while the 2nd-best players almost always won against the 

weakest player in the group (with a probability that is close to 1). The matches between the 2nd- 

and 3rd-best players, as well as the match between the 3rd-best and the weakest player, were more 

varied with probabilities that predominantly ranged between 0.6 and 1. With one notable 

exception, the probabilities for a win generally tended to have the expected pattern of becoming 

higher and higher for each player as they faced the weaker players of the group, evident by an 

overall increase in values in each row from left to right. The one notable exception was the 

match between the strongest and weakest players in the group (upper right and bottom left cells): 

For every possible solution, this match never favored the best player decisively, with 

probabilities that barely reached 0.8 and were most often closer to 0.75 or lower. In other words, 

the optimization analysis led to a range of results with one peculiar core theme: a relative 



 

weakness of the best player in the group when facing the weakest player. One additional peculiar 

result was the absolutely dominance of the 2nd-best player over the weakest player. While an 

advantage is expected, this was the most one-sided matchup in the whole matrix (higher, for 

example, than any of the winning probabilities of the best player), and it remained uniformly 

high for all possible solutions. 

 

---- Place Figure 3 Here ---- 

 

To gain deeper understanding of the core structure of the results, we performed PCA over 

the various solutions for 𝑝. We found that the majority of the variance in the solutions lied in the 

first principal component, indicated by the first eigenvalue being more than 5 times larger than 

the 2nd eigenvalue, and more than an order of a magnitude larger than the rest of the eigenvalues 

(Figure 3A). This first principal component almost exclusively modulated the probabilities of the 

3rd-best player’s matches. As seen in Figure 3B, the most affected probabilities were p4 and p6, 

representing the probability of the 3rd-best player losing to the 2nd-best player and winning 

against the weakest player, respectively. This influence was almost equally strong and in the 

opposite direction: The more likely the 3rd-best player was to lose to the 2nd-best player, the less 

likely he was to win against the weakest player. To a lesser degree, the probability of the 3rd-best 

player to lose to the best player (p2) was also influenced, in the same direction as his probability 

to lose to the 2nd-best player. So, in essence, the main variability in the solutions expressed the 

level of play exhibited by the 3rd-best player: from being closer in level to the 2nd-best player 

(and as a consequence a bit closer to the best player) on one end to being closer to the weakest 

player on the other end. Other than that, the balance of power between the players was quite 



 

stable (given the low values of the remaining eigenvalues) and could be expressed by the average 

values of 𝑝 across the different solutions. In a matrix form, 𝑃5 was equal to: 

   Losing player 

 

W
in

ni
ng

 p
la

ye
r 

 1 2 3 4 

 1  0.952 0.882 
(-0.5x) 

0.757 

 2 0.048  0.865 
(-x) 

0.988 

 3 0.118 
(+0.5x) 

0.135 
(+x) 

 0.857
(+x) 

 4 0.243 0.012 0.143 
(-x) 

 

 

Here, the average values are portrayed in the center of each cell. To allow easier 

comprehension of the possible variability in the level of the 3rd-best player, we also express, in 

brackets, the range of values resulting from adding the contribution of the first eigenvector. This 

is done using a variable, x, which could assume any value in the range [-0.135 < x < 0.143]. So, 

for example, the probability of the 3rd-best player winning against the weakest player could range 

from 0.722 (when x = -0.135) to 1 (when x = 0.143), with x simultaneously affecting the 

remaining 3rd-best player’s winning probability against the other players.   

Disregarding all eigenvectors, the average 𝑝	6alone was enough to yield a group standing 

distribution 𝑇"⃗ ′ that was a pretty close fit to the target distribution (𝑇"⃗ ′= [0.6622 0.2178 0.0912 

0.0288]; compare to equation (2)), proving that the variety in solutions, while mainly reflecting 

different possible strengths of the 3rd-best player compared to his opponents, did not contribute 

much in determining the group standings distribution. The 𝑃5 matrix above therefore represents 



 

the core balance of power between players in the ATP Finals for singles that lead to the 

empirical target distribution, which is the solution we were aiming to achieve. 

Next, to examine how the match winning probabilities affected the eventual group 

standing distribution, we fluctuated each of the 6 probability values while keeping the others 

constant at their average value and calculated the resulting distribution. Results are displayed in 

Figure 3C. As can be seen, the low frequency characterizing the 3-1-1-1 outcome is most 

strongly determined by the superiority of the 2nd-best player over the weakest player, as 

represented by p5; diminishing this superiority quickly increases the frequency of that outcome. 

In contrast, the vulnerability of the strongest player when facing the weakest player (represented 

by p3), is a major influence on the 3-2-1-1 and 2-2-1-1 outcomes. If the strongest player did not 

have this vulnerability, the outcome distribution would have been even more skewed than it is, 

with almost all groups ending with a 3-2-1-0 outcome. 

To conclude the analysis, we examined how “natural” match winning probabilities would 

influence the group standings. We define natural probabilities as those that unambiguously 

reflect systematic differences in the level of play between players in a group. Specifically, the 

best player would have a higher than 0.5 chance to win against any other player in the group with 

his winning probability values assuming an ascending gradient: The lowest probability would be 

against the 2nd-best player and the highest probability would be against the weakest player. 

Likewise, the 2nd-best player would have a higher than 0.5 chance to win against the 3rd-best and 

weakest player, with the latter probability being higher than the former, and both probabilities 

being lower than the corresponding ones for the best player when playing against the same 

opponents; and so on (in other words, the “natural” probably matrix, in contrast to the 𝑃5  matrix, 



 

will have increasing values from left to right in every row, and decreasing values from top to 

bottom in every column).  

To investigate the outcome of such settings, we randomized 10,000 �⃗� values under the 

above constraints and calculated the resulting group standings. Figure 4 displays 15 prototypes of 

these group standing distributions, obtained by running an optimized K-means clustering 

analysis on the 10,000 samples (see Figure caption for details). As expected, none of the 

prototypes resembled the target distribution (Figure 4, top left panel), and particularly none 

reflected the extremeness of the 3-1-1-1 outcome frequency. When looking at individual 

distributions, we found that only 12 out of the 10,000 (0.12%) resulted in the same or lower 

frequency of the empirical 3-1-1-1 outcome, showcasing how unsuitable the natural probabilities 

are for producing the target distribution. Moreover, in all cases where the 3-1-1-1 frequency was 

low, the 2-2-1-1 frequency was low as well (always below 4%) while the winning probabilities 

of the top 3 players against the weakest player was very high (all above 91% with the majority of 

cases being at 97% or higher). In other words, the natural probabilities produce a low 3-1-1-1 

frequency only when the weakest player was barely able to win a single match – necessarily 

making the 2-2-1-1 frequency low as well. This is partly similar to the distribution depicted in 

Figure 3C, third panel from the left, when p3 is assuming high values. To summarize, the target 

distribution, characterized by both a very low frequency of the 3-1-1-1 outcome and a medium 

frequency of the 2-2-1-1 outcome, cannot be achieved by winning probabilities that reflect a 

simple gradient in the level of play in a group. To explain the target distribution, a “non-natural” 

element needs to be introduced, such as the vulnerability of the strongest player in the group to 

the weakest player. 

 



 

---- Place Figure 4 Here ---- 

 

4. Discussion 

4.1 Summary and interpretation of the main results 

Our goal in this study was to uncover which balance of power between players in the singles 

tournament of the ATP Finals can lead to the observed skewed distribution of the tournament’s 

round-robin group standings, where one outcome is, surprisingly, extremely rare. Using a simple 

“model-free” approach that assumes stationary statistics of the match win probabilities between 

the players, we found a specific stable pattern that characterizes this balance of power, as 

displayed in the 𝑃5 matrix. We can sum up the core elements of this pattern as follows: 

1. One player is an overwhelming favorite to win the group, showing clear dominance over 

all other players; and another player is an obvious underdog with low probability to win 

against the others. 

2. Despite his superiority, the favorite player has nevertheless a relative vulnerability when 

facing the underdog (exemplified by his lower probability of winning that match 

compared to his other two matches against superior players) 

3. The 2nd-best player totally dominates the underdog and has an advantage over the 3rd-best 

player, which can be big or small (reflecting the 3rd-best player’s general level) 

 

Although our results uncover the balance of power that can yield the empirical group 

standing distribution, the reason why this balance of power appears in the first place demands 

explanation. Specifically, it is worth discussing what could yield our most notable finding, the 

fact that the underdog has a relatively high chance to surprise the favorite while still being totally 



 

dominated by the 2nd-best player. It may be tempting to view this result as a general example of a 

“puncher’s chance” (the phenomenon by which an underdog occasionally defies the expected 

odds and beats a much stronger player; e.g., Holmes, McHale, & Żychaluk, 2022); however, a 

more direct explanation could arise from one specific procedure followed by the ATP Finals 

concerning the way the order of matches is determined. The round-robin of the ATP Finals is 

organized such that the winners (and the losers) of the first two matches always meet in their 

second match. For example, if the first 2 matches in a group were played between players A and 

B, with A winning, and between C and D, with D winning, the next two matches would be 

between A and D, and C and B. That order, on its own, increases the probability that the match 

between the strongest and weakest players in a group would be the last one. Assuming that the 

pairing of players in their first match is totally random, it can be shown, using the 𝑃5 matrix (with 

x=0), that the favorite and underdog players would meet in their last match in 56% of the times 

(as compared to a baseline of 33% if the order of all matches was totally random). In reality, the 

rules regarding the initial pairing have slightly fluctuated over the years based on players’ 

seeding in a way that could either increase or decrease this probability; but an empirical 

examination shows that among all groups that ended in either a 3-2-1-0 or 2-2-1-1 outcome (the 

outcomes that, as described above, depend the most on the result of the match between the 

favorite and the underdog), the match between the winner of the group and the loser of the group 

was the final one in approximately 59% of the cases4. Assuming the winner and loser of the 

groups that end with these outcomes are the strongest and weakest players, respectively (an 

assumption that is obviously not always true, but quite often is; see the 𝑃5 matrix), this result 

 
4 This result was calculated based on all ATP Final tournaments from 1990 and on, for which match order is readily 
available. 



 

further supports the fact that the favorite and underdog in a group are more often than not 

meeting only in their final round-robin match. 

The relevance of this result to our finding is quite straightforward: It suggests that the 

favorite often arrives to his last match having already won the previous two and after already 

qualifying to the semifinals. Such situations are known in sports to potentially lead to an 

intentional lack of effort, either to “save the body” for the matches ahead or simply due to a lack 

of interest in a match that doesn’t determine much. Consequently, the probability for the 

underdog to surprise the favorite increases, despite the significant gap in their base level. 

Importantly, this scenario does not apply – and, in fact, is opposite - to the experience of the 2nd-

best player. The 2nd-best player would predominantly meet the underdog in either his first or 

second round-robin match, when each result is still crucial in determining the final outcome of 

the group. Therefore, the 2nd-best player is expected to “give his best” in these matches, 

potentially resulting in the full expression of his advantage over the underdog. 

 

4.4 Limitations of the approach 

One assumption taken in this study is that the match-winning probabilities in the ATP Finals are 

stationary. There exists, however, a finding that casts some doubt on this assumption. It concerns 

another unique characteristic of the ATP Finals: The potential of two players meeting more than 

once. This situation can occur in only one scenario: When the top two players of one group end 

up meeting again in the final (after having won their respective semi-finals). Ostensibly, we 

would expect the outcome of both matches to be the same more often than not, reflecting the 

relative strength of the two players and assuming stationary statistics. However, in the 19 times 

this scenario has played out in the ATP finals, more than half (11 times, or ~58%) resulted in a 



 

switch of the winner’s identity. This result cannot be accounted for by any stationary balance of 

power between the players in the round-robin stage. It is also quite peculiar on its own merit, 

given that the two matches are played under similar conditions, only a few days apart. It implies 

that the two matches likely have a different winning probability – in other words, they reflect 

non-stationary statistics. This peculiar finding could be partially accounted for by observing that 

in the majority of years where such repeated encounter has taken place, the final – and only the 

final – was played in a best-out-of-5 sets format, rather than best-out-of-3 like the remainder of 

the tournament. Best-out-of-5 matches tend to emphasize some aspects of game play that are less 

important in best-out-of-3 matches, such as stamina and endurance. While not fully explaining 

the switch in the winner’s identity (after all, we would still expect the better player to show his 

superiority despite the difference in match length), this observation at least serves to highlight 

why the winning probability may not be stationary. However, even when excluding the years 

when the final was played in a best-out-of-5 format, we still find that the player who won the 

round-robin encounter proceeded to win against the same opponent in the final in only 4 out of 7 

times (57.1%, which is far less than the expected probability of 75.7% portrayed in the 𝑃5 

matrix). It is difficult to draw strong conclusions from such limited amount of data, but it does 

seem that, overall, repeated matches in an ATP Finals tournament lead to a modification in the 

winning probability between the players involved, whether played in a best-out-of-5 or best-out-

of-3 sets. Potential accounts for this result (e.g., adjustments of the losing player following the 

first game that improve his chances considerably given the opportunity to face the same player 

again within a short period of time under the same conditions) will need to be explored in future 

studies. 

 



 

4.5 Implications and Conclusions 

Several conclusions can be drawn from our study. 

First, our results exemplify the type of non-trivial, tournament-specific information that 

should be taken into account when considering betting odds in tennis (or other sports for that 

matter). For example, consider the final pair of matches played in a round-robin stage in the ATP 

Finals. Knowing that a 3-1-1-1 outcome is so rare, one could exploit this information when 

placing bets on these matches even if it contradicts more immediate information about the 

identity of the players involved and their seedings. Indeed, over the last 3 decades, there have 

been 8 occasions where a 3-1-1-1 outcome was one match away from materializing with the 

result of this match only needing to follow the players’ seeding (often the more likely result in 

betting agencies). However, in only 2 of those times did the “likely” result occur. In other words, 

the 3-1-1-1 outcome has such low a-priory probability that, even when it depends on one final 

match going according to seeding, its conditional probability does not rise above 25%. 

Second, our results highlight the degree to which decisions on the format and settings of a 

tournament affect outcomes. For example, the order by which matches are played will often have 

unpredictable effect on who is advancing to the next round and who is not; and whether players 

compete against each other only once or multiple times will have a strong influence on their 

probability to come out on top. Tournament directors and other stakeholders should be aware of 

such non-trivial dependencies when determining the rules and regulations of play, in tennis and 

otherwise. 

Finally, our results serve to demonstrate how surprising, extreme or unexpected statistical 

phenomena in sports can serve as a fruitful platform to uncover underlying mechanisms in play, 

sometimes even negating the need for a complex statistical model. In our case, the peculiar 



 

distribution of the final group standings in the ATP Finals for singles, as well as the unique 

format of the tournament itself, contributed to our finding of a specific balance of power among 

players, one that may not be evident when looking at more standard or widespread settings. This 

approach, of looking at edge cases, resembles a common practice in fields like neuroscience, 

where aberrant states – for example, a patient with brain lesions that cause unique deficiencies in 

the perception of reality – can teach us a lot about the primary brain processes involved. Since 

most academic papers on tennis choose to address global patterns, across whole careers and 

multiple tournaments, they may miss statistical trends that could be more relevant for predictions 

of local events. Future studies may adapt our general approach to analyze other tournaments 

employing a round-robin stage, such as the WTA Finals, the Davis Cup and the Billie Jean King 

(“Fed”) Cup, to potentially uncover their own unique statistical trends. 
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Figure Captions 

Figure 1: Comparison between the observed joint probability distribution of possible group 

standing outcomes for the two groups in the ATP Finals singles each year and the expected 

distribution if the groups were independent and equally distributed. Data is based on 92 groups 

over 46 years of the tournament. The numbers 1,2,3,4 on the x-axis refer to the four possible 

group outcomes, [3 2 1 0], [2 2 1 1], [2 2 2 0], [3 1 1 1], respectively. 

 

Figure 2: Range of solutions for the match winning probabilities among players in the ATP finals 

round-robin. 

 

Figure 3: Analysis of the match winning probability solutions. A: Eigenvalues corresponding to 

the 6 eigenvectors representing the variance of solutions for the 6 probability values following 

Principal Component Analysis (PCA), showing the 1st eigenvector is by far the most critical to 

describe the variety in solutions. B: Weights of the 1st eigenvector. Values for p4 and p6 

(representing probabilities for the matches between the 3rd-best player against the 2nd-best and 



 

weakest players, respectively) are the ones most influenced, in opposite directions. p2 

(representing the match between the 3rd-best and the strongest player) is also influenced, to a 

lesser degree. C: Modulation of the group standing distribution as a result of variations in each 

probability value from its average (see the 𝑃5 matrix; the averages are marked by black dots). 

Results show the 3-1-1-1 outcome is most strongly influenced by p5, whereas the 3-2-1-1 and 2-

2-1-1 outcomes are most strongly influenced by p3.  

 

Figure 4: Prototypes of group standing distributions resulting from “natural” winning 

probabilities (15 panels in blue bars; see text for the definition of natural probabilities in this 

context). The prototypes were identified using K-means clustering (Lloyd 1982), with the 

optimal number of clusters determined using the ‘elbow’ method (Kodinariya and Makwana 

2013). The vertical black lines represent one standard deviation above and below the mean 

(covering about 65% of the individual samples contributing to the prototype). For comparison, 

the empirical target distribution is displayed in red bars on the top left panel. 
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