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Introduction

The facilitatory effects of sleep on memory 
consolidation have been well established dur
ing the past two decades in both human and 
animal studies. Sleep has been shown to con
tribute to a variety of cognitive processes, and 
two particular sleep stages that alternate 
throughout the course of a night, slow wave 
sleep (SWS) and rapid eye movement (REM) 
sleep, were frequently implicated in distinct 
cognitive abilities (Rasch & Born, 2013). SWS, 
a stage most abundant in the early parts of the 
night and characterized by slow oscillations 
in EEG activity, has been shown to contribute 
to the enhancement of declarative memo
ries, ranging from improved recall of paired 
 associates to explicit insight into hidden 
rules governing recently learned material (e.g., 
Marshall, Helgadóttir, Mölle, & Born,  2006; 
Plihal & Born,  1997; Wagner, Gais, Haider, 
Verleger, & Born, 2004). REM, a sleep stage 
more pronounced in the latter parts of the 
night and often referred to as “paradoxical 
sleep” due to its EEG activity resembling wake 
time (and also being the period when most 
dreams appear), has been linked to enhance
ment of procedural memories (e.g., motor 
learning; Karni, Tanne, Rubenstein, Askenasy, 
& Sagi, 1994; Maquet et al., Maquet, Laureys, 
Peigneux, Fuchs, Petiau, Phillips and 
Meulemans, 2000; Plihal & Born, 1997), as 

well as to creative thinking in tasks involving 
linguistic materials (Cai, Mednick, Harrison, 
Kanady, & Mednick,  2009; Walker, Liston, 
Hobson, & Stickgold,  2002). Moreover, the 
typical cycling between SWS and REM along 
the course of a night was demonstrated to 
have a functional role in procedural learning 
as well (Stickgold, James, & Hobson, 2000).

While the experimental data on the effects 
of sleep on cognition have been rapidly accu
mulating, questions regarding the biological 
mechanisms underlying these effects from a 
computational perspective, as well as the dif
ferential role of specific sleep stages, are yet 
to receive definitive answers. Nevertheless, 
two theoretical approaches, sometimes seen 
as competitive, stand out as the prevalent 
contemporary hypotheses in the field. One, 
the “memory reactivation” approach (some
times also referred to as the “active system 
consolidation theory”; Rasch & Born, 2013), 
highlights the role of reactivation of recently 
acquired experiences during offline periods 
in memory consolidation. The other, the 
“sleep homeostasis hypothesis” (Tononi & 
Cirelli,  2006), focuses on the role of renor
malization of synaptic connectivity during 
sleep and its resulting memory benefits. 
While both approaches are based on physio
logical findings in human and animal sleep, 
each offers distinct understanding of how 
cognitive performance is benefited as a result. 
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In the following, I will review the core com
putational principles of the two approaches, 
as well as some other, related models, and 
their respective accounts of sleepdependent 
cognitive facilitation. I will then discuss the 
relations between the models and whether 
they are best seen as contradictory, or, in fact, 
complementary. Finally, I will argue that 
some complex cognitive faculties, such as 
sleepdependent facilitation of insight, have 
not been sufficiently addressed by previous 
models and will introduce a novel reactivation 
based hypothesis that offers an explanation 
for such effects.

Contemporary 
Computational Models  
of Sleep and Cognition

The Memory Reactivation Theory

The memory reactivation theory asserts that 
memories that are encoded during waking 
activity go through a secondary process of 
consolidation during resting periods, includ
ing sleep. As part of the consolidation pro
cesses, these memories are reactivated, 
strengthened, reorganized, and integrated 
into the general knowledge structure. 
According to the theory, neural networks in 
the brain face a major computational challenge 
during learning—catastrophic interference 
(McCloskey & Cohen, 1989). Reactivation of 
memory during offline periods, in turn, offers 
a solution to this interference.

In the most seminal of the reactivation 
models (McClelland, McNaughton, & O’Reilly, 
1995), catastrophic interference is exemplified 
by the distinct challenge the brain is facing 
when needing to balance between the require
ment to learn new things quickly and the need 
to extract common structure from distinct 
experiences and store them in an organized 
way. These two requirements are often in con
flict. For example, when parking the car every 
day before going to work, one needs to 
remember the location of the car at that par
ticular day and avoid conflating this informa
tion with memories of the car’s location at 

previous days. Thus, this “episodic” memory 
should be encoded in a way that is distinct 
from similar episodic memories. In computa
tional terms, the representations of the new 
memory and the previous, somewhat similar, 
memories should be orthogonal (i.e., without 
correlations). On the other hand, when one 
needs to learn where the best places to park 
the car are, what times the spot right below 
the office is free, and when is parking on 
Bleecker Street not allowed, memories from 
all the relevant parking experiences should be 
compared and their commonalities extracted. 
In other words, these memories should be 
encoded in a “semantic” way that reflects the 
similar and dissimilar aspects of the experi
ences they represent rather than being stored 
in isolation. In computational terms, the rep
resentations should be correlated to reflect the 
inherent structure of the environment. These 
two contradicting requirements pose a prob
lem regarding how to best encode new 
memories.

The common view in the field holds that 
the brain solves this dilemma by applying a 
complementary learning systems approach 
(McClelland et al., McClelland, McNaughton 
and O’Reilly, 1995). One system, residing in 
the medial temporal lobe (MTL) and particu
larly the hippocampus, is in charge of storing 
new experiences through sparse coding (i.e., 
encoding representations based on the activ
ity of a relatively small number of neurons). 
Thus, different neurons become responsible 
for different memories, and interference 
between them is minimized. As a result, 
memories of where I parked my car today 
and where I parked it yesterday remain dis
tinct, despite their inherent similarity. 
Conversely, the other system, residing in the 
neocortex (especially the prefrontal cortex), 
is in charge of storing memories in a way  
that reflects any inherent structure within 
the environment that yielded them. In that 
system, for example, the memory repre
sentations of the two times I received a 
parking ticket in Bleecker Street would be 
correlated to reflect that at both times, it was 
a Tuesday afternoon. This structure allows the 
extraction of generalities and rule learning 

c18.indd   246 7/7/2017   9:45:43 AM



Contemporary Computational Models of Sleep and Cognition  247

(i.e., “never park the car on Bleecker Street 
on a Tuesday afternoon”).

The problem with catastrophic interfer
ence becomes apparent when considering 
what each system requires to encode its char
acteristic representations. Encoding distinct 
episodic memories requires “oneshot learn
ing”: strong imprinting of the experience after 
a single exposure. This, in turn, requires rela
tively large synaptic changes within the net
work. In contrast, encoding a new experience 
such that it is integrated into a previously 
stored semantic structure requires slow 
learning, in which the new experience is 
gradually presented to the semantic network 
interleaved with presentations of previously 
learned experiences. Only such slow learning 
allows the network to extract the structure 
governing these experiences. If, instead, the 
new experience is imprinted into the seman
tic network through strong modifications of 
synaptic connections, or, alternatively, pre
sented repeatedly without interleaving it with 
former experiences, it will run over previously 
stored memories, rendering them inaccessi
ble. In other words, a catastrophic interfer
ence will emerge.

According to the complementary learning 
systems approach, the solution to this compu
tational problem is to separate learning into 
two stages. In the first, the episodic system 
within the MTL quickly encodes new experi
ences during active wake. In the second, those 
new experiences, already encoded in the 
MTL, are incrementally presented to the neo
cortical semantic system, interleaved with 
previously encoded experiences. This slow 
process does not depend on exposure to new 
information in the environment and as such 
can occur during offline periods. According 
to the reactivation theory, such a semantiza
tion process is what happens during rest and 
sleep (Stickgold, 2009). Specifically, the the
ory identifies SWS as especially prominent in 
this transfer of information, given the vast 
biological evidence of a hippocampal– 
cortical dialogue during that phase (Buzsaki, 
1989; Hasselmo, 1999).

Other models highlight that catastrophic 
inter ference could also occur when the  

statistics of the environment changes (Norman, 
Newman, & Perotte,  2005; Káli & Dayan, 
2004). For example, imagine that for a period 
of a few months, the hours and days during 
which parking on Bleecker Street is prohib
ited change from Tuesday afternoons to 
Wednesday mornings. While the brain slowly 
picks up these new statistics, the old ones, 
which are no longer reinforced, will fade 
away. When the original environment returns 
into play (e.g., parking rules in Bleecker Street 
return to normal), the originally formed 
memories will no longer be accessible. The 
solution to this kind of catastrophic interfer
ence, however, remains similar: reactivation 
of the old memories in parallel to the new 
ones during offline periods, thus preventing 
them from decaying in face of the environ
mental change. This reactivation, according 
to the models, could either occur as part of a 
hippocampus–cortical dialogue during SWS, 
or take place during REM within the neocor
tex itself (Norman et al., Norman, Newman 
and Perotte, 2005).

Different components of the memory reac
tivation theory are supported by evidence. 
Most strongly supported is the linkage 
between reactivation in the hippocampus 
during SWS and neocortical learning. First, 
SWS has been associated with improved per
formance in a range of declarative memory 
tasks in humans (e.g., Peigneux et al., 2004; 
Plihal & Born, 1997; Yordanova et al., 2008). 
Second, and more crucially, singlecell 
recordings from the rodent hippocampus 
during sleep have established that sequential 
experiences from previous waking periods 
are replayed in a compressed timescale 
(about 10–20 times faster than the original 
wake experience time (Rasch & Born, 2013) 
during the first hour of SWS, supplying basic 
biological evidence for the reactivation the
ory (e.g., Wilson & McNaughton,  1994). 
Third, this compressed memory replay takes 
place during specifically defined events 
called “sharpwave ripples”: 100mslong 
increases in the oscillation frequency of local 
field potentials in the hippocampus. Sharp
wave ripples, in turn, have been shown to 
have temporal correlations with short bursts 
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of cortical oscillations termed “sleep spin
dles” (Ji & Wilson,  2007; Siapas & Wilson, 
1998), substantiating the idea of a memory
related hippocampal–cortical dialogue dur
ing SWS. Finally, memory replay, sharpwave 
ripples, and sleep spindles have been directly 
and indirectly associated with performance 
on memory tasks in rodents and humans 
(Axmacher, Elger, & Fell,  2008; Clemens 
et al., 2007; Gais, Mölle, Helms, & Born, 2002; 
Girardeau, Benchenane, Wiener, Buzsáki, & 
Zugaro, 2009; Marshall et al., 2006; Pfeiffer & 
Foster, 2013).

To a lesser degree, there is also evidence for 
a role of replay in REM sleep. First, imaging 
data in humans have shown that cortical 
regions that are activated during learning of a 
visuomotor task are reactivated during REM 
(Maquet et al., 2000). This effect corresponds 
to a number of studies associating REM sleep 
with the facilitation of procedural memories 
in humans (Plihal & Born, 1997) and animals 
(Pearlman & Becker, 1974). Second, there is 
some evidence from singlecell recordings of 
sequential replay in the rodent hippocampus 
during REM (Louie & Wilson, 2001).

The reactivation theory, however, is not 
without its limitations when attempting to 
account for sleeprelated cognitive benefits. 
First, although it suggests that reactivation 
can serve as a mechanism for detecting 
structure within learned stimuli, it has pre
dominantly been demonstrated in relation to 
simple stabilization of memory. Specific sim
ulations of behavioral results showing facili
tation of processes such as rule learning, 
insight, and creativity are scarce (but see 
Kumaran & McClelland,  2012). Moreover, 
structure governing newly learned stimuli is 
often detected during active wake as well, 
possibly within the MTL itself (Gluck & 
Myers,  1993). It is therefore not perfectly 
clear what sleep adds to these processes. 
Finally, the reactivation theory does not give 
a definitive answer as to the differential roles 
of REM and SWS. First, why is there more 
than one sleep stage to begin with? And sec
ond, how do the unique physiological prop
erties of each stage relate to their function 
role in memory?

The Synaptic Homeostasis 
Hypothesis

The synaptic homeostasis hypothesis (Tononi 
& Cirelli, 2006), rather than addressing sleep
related facilitation of cognitive processes 
directly, aims at answering an even more 
ambitious question: why do we sleep at all? 
The answer, according to this theory, is that 
“sleep is the price we pay for plasticity” 
(Tononi & Cirelli, 2014). It asserts that learn
ing during wake results in a net increase of 
synaptic strength in the brain. This increase 
is problematic: First, since synaptic connec
tivity cannot increase ad infinitum, it limits 
the ability to learn new things once reaching 
values close to ceiling. Second, it is energeti
cally costly, and possibly toxic, for neurons to 
constantly secrete high amounts of synaptic 
neurotransmitters. Third, when networks 
continually operate within a regime of strong 
synaptic connectivity, the neurons tend to 
synchronize their activity, reducing the selec
tivity of their responses to inputs (Olcese, 
Esser, & Tononi, 2010). According to the the
ory, the solution to all of these challenges is to 
regain synaptic homeostasis by decreasing 
the net strength of synaptic connections dur
ing offline periods when active learning of 
the environment is minimized. This “renor
malization” (sometimes also referred to as 
“downscaling,” “downregulation,” or “down
selection”) happens during, and is driven by, 
SWS, and has a selective nature: Rather than 
being reduced indiscriminately, the reduc
tion is a function of the synaptic strength 
before sleep. In some versions of the model, 
synapses decrease proportionally to their 
original strength and are eliminated if they 
fall below a certain threshold (Hill, Tononi, & 
Ghilardi,  2008). In other versions, stronger 
synapses are protected from decrease com
pared to weaker ones (Nere, Hashmi, Cirelli, 
& Tononi, 2013). Regardless of the particular 
mechanism of reduction, all models lead to a 
similar outcome: An increase in the signal to 
noise ratio of stored memories. Thus, while 
intended to solve a biological stability issue, 
this process can have significant computa
tional consequences as well, which, in turn, 
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have the potential to facilitate a variety of 
cognitive processes. Nere and colleagues 
(2013) have demonstrated this point by show
ing how learning in a neural network model 
leads to the creation of strong, desired con
nections between neurons, representing true 
associations between stimuli, alongside 
weaker connections that reflect spurious 
associations (resulting from noise or errors 
during encoding). These weak connections 
can lead to belowpar performance when 
testing the quality of learning. For example, 
in sequence learning, where each learned 
segment is associated with the next item in 
the chain of events (e.g., learning a sequence 
of turns when driving from home to work), 
spurious associations may lead to eliciting the 
wrong segment in the sequence during task 
performance; in pairedassociates learning, 
the wrong association may be recalled; and in 
gist learning, where only the commonalities 
among several learned examples should be 
remembered rather than each example on its 
own (e.g., recalling that on Tuesday afternoons 
parking in Bleecker Street is not allowed, 
rather than recalling the fact that it was rain
ing on a particular day I got a ticket), the 
unnecessary details of each example may over
take the commonalities, leading to a failure to 
recognize the gist. In all of these examples, 
preserving the strong synaptic connections 
while degrading—or eliminating—the weak 
ones, as is assumed to occur during SWS, can 
improve performance.

The basic principle suggested by the syn
aptic homeostasis hypothesis, namely, a net 
increase in synaptic strength after wake and a 
decrease after sleep, is supported by a variety 
of biological findings from different animal 
species. In Drosophila, synapse size and 
number, as well as the levels of proteins 
related to synaptic transmission, increase 
and decrease with wake and sleep, respec
tively. Miniature excitatory postsynaptic cur
rents in the rodent frontal cortex, indicative 
of synaptic efficacy, increase after wake and 
reduce after sleep (Liu, Faraguna, Cirelli, 
Tononi, & Gao, 2010). A similar pattern was 
demonstrated with synaptic receptors in the 
rat frontal cortex, as well as with the slope of 

the frontal cortex response to electric stimu
lation (a known indicator of excitability), the 
latter also being correlated to the degree of 
slow wave activity during sleep (Vyazovskiy, 
Cirelli, PfisterGenskow, Faraguna, & Tononi, 
2008). Similar results were obtained with the 
slope of response to transcranial magnetic 
stimulation (TMS) in humans.

Some indirect evidence also supports the 
relations between sleepdependent synaptic 
renormalization and improvement in cogni
tive tasks. Experimental and computational 
findings suggest that learning during wake 
leads to local increases in slow wave activity 
in the same brain regions responsible for that 
learning, as well as to the expression of  
plasticityrelated genes. This slow wave 
activity then decreases following SWS in 
proportion to the presleep increase (Huber, 
Ghilardi, Massimini, & Tononi, 2004; Huber, 
Tononi, & Cirelli, 2007; Olcese et al., 2010). It 
therefore stands to reason that SWS
dependent overnight gains in learning are at 
least partly the result of the synaptic decrease 
taking place during SWS (Tononi & 
Cirelli, 2014).

Nevertheless, the synaptic homeostasis 
hypothesis, too, is limited in its ability to 
explain cognitive benefits following sleep. 
First, unlike the reactivation theory, it does not 
initiate from a fundamental computational 
principle (such as the need to avoid cata
strophic interference) but, rather, from a bio
mechanical one. Therefore, any cognitive 
facilitation predicted by the theory is, to some 
degree, incidental. Second, unlike the evidence 
for a net decrease in overall synaptic strength 
following sleep, evidence that synapses decay 
as a function of their original strength is scarce 
(Frank, 2012). Third, and quite similar to the 
reactivation theory, the function of REM sleep 
and its effects on cognition remains largely 
uncharted territory (but see Tononi & Cirelli, 
2014, for some initial suggestions).

Common Principles in Current  
and Past Models

Both the memory reactivation and the syn
aptic homeostasis models share similarities 
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with earlier semicomputational models of 
sleep and cognition. Crick and Mitchison 
(1983) suggested that the function of sleep—
and specifically, REM sleep—is to allow spu
rious, parasitic memories, which do not 
reflect any actual experiences but are una
voidably created during the encoding of real 
memories, to be removed through “reverse 
learning.” This resembles the synaptic home
ostasis hypothesis, in which a general synaptic 
downregulation mechanism yields mem
ory benefits by improving the signal to 
noise ratio in the network. Conversely, in 
the sequential hypothesis of sleep (Giuditta 
et al., 1995), SWS and REM are suggested to 
act successively to, first, dispose of irrelevant, 
nonadaptive memories (during SWS) and 
then reorganize and integrate the remaining 
memories within the general knowledge 
structure (during REM). This theory shares 
properties with both the memory reactiva
tion and synaptic homeostasis theories, with 
each mechanism assigned to a different sleep 
stage in a functional order (see also Walker & 
Stickgold, 2010).

Contrasting the memory reactivation and 
synaptic homeostasis models directly, appar
ent contradictions seem to arise. One model 
suggests that novel neuronal associations are 
formed during sleep, particularly SWS, 
whereas the other highlights the elimination 
of such associations during SWS; one advo
cates a systems approach to sleep in which 
slow waves orchestrate different brain 
regions to act in concert and allow the trans
fer of memories from one region to another, 
whereas the other emphasizes the ability of 
local circuitry to engage in slow wave activity 
and thus reduce its synaptic overload inde
pendently of other neural circuits in the 
brain; and while the evidence for memory 
replay in the hippocampus is at the core of 
the memory reactivation model, it is viewed 
by the synaptic homeostasis approach as a 
rather trivial indication of the fact that some 
synaptic connections were formed more 
recently than others, rendering the involved 
neurons more prone to repeating the same 
activation during subsequent sleep (Olcese 
et al., 2010).

The two approaches, however, are only 
contradictory as far as they are taken to 
extreme. Acknowledging that potentiation 
and depression of synapses during sleep can 
occur in parallel may lead to the conclusion 
that, in fact, they are complementary. As sug
gested by Lewis and Durrant (2011), both 
replay and downscaling may take place dur
ing SWS. Memory replay could allow the 
transfer of sparse hippocampal memories to 
the cortex where their commonalities are 
identified, whereas downscaling, by reducing 
the strength of all cortical connections, could 
lead to the elimination of connections that 
support the idiosyncratic attributes of each 
memory. This twophase process ensures 
that only the gist of common experiences (or 
“cognitive schemata” in the words of the 
authors) remains vivid in the network. 
Indeed, such cyclic alternations between 
potentiation and depression were previously 
suggested as characterizing general sleep
dependent consolidation processes within a 
pure reactivation model (Norman et al., 
2005). In other words, from a computational 
perspective, there is nothing in the memory 
reactivation model that forbids depression of 
synapses, and, as a result, an increase in signal 
tonoise ratio similar to the one suggested by 
the synaptic homeostasis hypothesis. The 
conclusion is clear: the mechanisms allowing 
memory consolidation through reactivation 
encompass those of the synaptic homeostasis 
theory. The theories may differ on the bio
logical constraints speculated to take place, 
but they do not adhere to completely unre
lated learning mechanisms.

Going Beyond Modeling  
of Simple Sleep Effects  
on Memory

One common feature of contemporary com
putational models of sleep is their focus on 
basic consolidation processes. The influence 
of sleep on other, more unique types of learn
ing is not explained in detail. An example of 
such process is “insight” learning: the sudden 
realization of hidden patterns within encoded 
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stimuli, patterns that, once identified, signifi
cantly facilitate performance in relevant 
tasks. Insight learning was shown to improve 
following sleep compared to an equivalent 
period of wake. Evidence for this effect comes 
from experiments using paradigms such as 
the Number Reduction Task (NRT) and the 
Serial Reaction Time Task (SRTT).

In the NRT, subjects perform computa
tions on a series of digit pairs in succession 
(Fig.  18.1, left; see details in Rose, Haider, 
Weiller, & Büchel, 2002). For each pair, they 
need to produce a third digit based on some 
simple rule. Throughout each trial, subjects 
produce a total of seven digits one after the 
other by continually employing the rule, with 
the final digit considered as the ultimate 
answer for that trial. Unrevealed to the  
subjects, there is a hidden regularity that 
determines that final response. If subjects 
recognize the regularity, they can produce the 
answer as soon as they compute the second 
response in the sequence, allowing them to 
skip the rest of the successive computation.

In the SRTT (Fig. 18.1, right), subjects are 
exposed to a series of successive cues appear
ing in one of several possible locations. They 
are asked to respond to each cue as quickly as 

possible by pressing a corresponding button. 
Unknown to the subjects, a hidden regularity 
governs the order of the cues (e.g., two suc
cessive locations probabilistically predict the 
location of the next; Fischer, Drosopoulos, 
Tsen, & Born, 2006). Subjects who recognize 
the regularity can predict where the next cue 
will appear and reduce their reaction time 
considerably.

Sleep was found to significantly increase 
the probability of discovering the hidden reg
ularity in NRT compared to similar time in 
wake (Wagner et al.,  2004). Further, when 
comparing sleep rich with SWS compared to 
sleep with little SWS (“split night design”; see 
Plihal & Born,  1997) effects were found to 
occur only following sleep rich in SWS and 
to correlate with markers of sleep spindles 
(Yordanova et al.,  2008; Yordanova, Kolev, 
Wagner, Born, & Verleger, 2012). These find
ings, coupled with functional imaging stud
ies showing that performance in the NRT 
involves activation of the medial temporal 
lobe, including the hippocampus (Rose et 
al.,  2002) strongly suggest that it is SWS
related processes in the hippocampus that 
facilitate the sleepinduced discovery of the 
hidden regularity. Similar findings were found 
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Figure 18.1 Illustrations of the Number Reduction Task (NRT) and Serial Reaction Time Task (SRTT).
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using the SRTT paradigm (Fischer et al., 2006; 
Wilhelm et al., 2013).

Can Current Models Account  
for Sleep-dependent Insight?

Current models deal with evidence for sleep
related insight in vague terms. The memory 
reactivation approach explains such results 
by assuming that representations of the stim
uli, encoded as isolated episodic memories, 
are transferred to the neocortex during sleep 
to allow the extraction of their internal hid
den structure. However, stimuli structure 
can generally be extracted during wake as 
well. In the NRT, it was shown that some 
implicit knowledge of the hidden pattern, 
reflected by a reduction in response time to 
the last digit in each sequence, often exists 
before sleep (Wagner et al., 2004). It is there
fore not clear why sleep, in contrast to wake, 
should provide a unique opportunity to 
enhance explicit detection of the hidden reg
ularities. Conversely, the synaptic homeosta
sis theory, due to its complete dependence 
on synaptic downregulation as the sleep
dependent memory enhancement mecha
nism, asserts that detection of the hidden 
regularities is already achieved during wake, 
but is blurred by spurious associations that 
need to be degraded to allow the crucial 
associations to fully manifest (Tononi & 
Cirelli, 2014). However, this explanation is no 
less problematic: first, since the hidden rela
tions remain implicit before sleep, it stands 
to reason that they are only weakly repre
sented by the synaptic connections following 
learning. In that case, why should their fate 
be any different than the spurious connec
tions that are being eliminated through the 
renormalization process? Second, results in 
the NRT experiment indicate that the insight 
achieved following sleep is based on different 
mechanisms than the ones active during 
wake. Specifically, the reduction in response 
times to the predictable digits, achieved 
before sleep, was not correlated with the 
probability of having insight into the hidden 
structure following sleep (Wagner et al., 
2004). This finding directly questions the 

core assertion of the synaptic homeostasis 
account regarding insight learning.

The Temporal Scaffolding 
Hypothesis—a Possible Solution?

One novel approach to explain sleepinspired 
insight from a memory reactivation perspec
tive can arise from the particular biological 
characteristics of memory replay—specifi
cally, its timecompressed nature. This 
approach is based on an important observa
tion: the hidden rule in tasks that yield insight 
following sleep (such as the NRT and SRTT) 
is not a general rule per se, but, rather, a tem-
poral rule. That is, the nature of the hidden 
regularity embedded in these tasks is of the 
form “occurrence of event x predicts the 
occurrence of a future event y,” with event y 
typically arising several seconds later, not 
necessarily in succession (e.g., the second 
response in the NRT predicts the seventh 
response). The significance of this observa
tion becomes clear when considering the 
common view of how the brain picks up 
unexpected regularities in the environment. 
It is believed that such regularities are 
encoded in the hippocampus using Hebbian 
mechanisms (Gluck & Myers,  1993), which 
neurally associate representations of events 
that happen in close temporal proximity 
(“Neurons that fire together, wire together”; 
Shatz,  1992). However, the flipside of such 
mechanism is that regularities spanning 
longer periods of time than the typical 
Hebbian timescales (50–200 ms; August & 
Levy,  1999) should be difficult to detect, 
especially given that subjects are not 
instructed to look for regularities and thus do 
not deliberately attempt to keep representa
tions active in working memory while attend
ing to the stimuli.

The solution to this challenge could be  
the compressed nature of memory replay. 
Assuming those sequences are encoded in 
the hippocampus and then replayed during 
SWS in an accelerated manner, disparate 
representations may be brought “together,” 
within Hebbian timescales, and become asso
ciated. Consequently, temporal regularities 
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will be picked up by Hebbian mechanisms 
during sleep much like stationary regulari
ties are detected during wake. Upon awak
ening, those associations could be used as 
“scaffolding” to permit the extraction of the 
hidden rule governing the stimuli and result 
in huge “insightlike” performance improve
ments. Fig. 18.2 illustrates this for the NRT 
task: before sleep, sequential sensory expe
riences are encoded in the hippocampus. 
During SWS, these sequences are replayed in 
a compressed manner, allowing associations 
between temporally disparate segments in 
the hippocampus and consequently detec
tion of previously ignored temporal correla
tions by the prefrontal cortex (e.g., response 
2 and 7 are always the same). The following 
day, those temporal correlations are utilized 
to predict future events (possibly through 
wakereplay in the hippocampus; see Pfeiffer 
& Foster, 2013).

The “temporal scaffolding” hypothesis 
goes beyond the general framework of the 

memory reactivation theory in several ways: 
first, it identifies what type of patterns are 
more likely to yield insightful learning, 
namely, patterns that are based on a tempo
ral structure; second, it explains why these 
patterns would not be easily recognized dur
ing wake and why their learning during sleep 
could manifest itself as sudden insight; and 
third, it suggests a specific role for the com
pressed timescale characterizing memory 
replay, a phenomenon that has so far 
remained largely unaccounted for (Abel, 
Havekes, Saletin, & Walker, 2013).

Conclusion

While it is now clear that sleep affects cog
nitive processing in a variety of ways, the 
mechanisms supporting these effects are less 
understood. Contemporary computational 
models suggest several biologically plausi
ble processes, ranging from sleepdependent 
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memory reactivation that allows learning 
without running into catastrophic interfer
ence, to sleepdependent synaptic renormali
zation that elevates signaltonoise ratio when 
accessing stored memories. However, these 
models, in their present form, are limited. 
They are generally centered on SWS rather 
than the whole sleep cycle, and they mostly 

focus on basic memory stabilization processes, 
largely neglecting the mechanisms that allow 
sleep to facilitate more complex cognitive pro
cesses. Future advancements in computational 
modeling of sleep and cognition will need to 
address these unaccounted phenomena. One 
possible step forward, the temporal scaffold
ing hypothesis, has been presented.
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