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Abstract

Localist models of spreading activation (SA) and models assuming distributed representations

offer very different takes on semantic priming, a widely investigated paradigm in word recognition

and semantic memory research. In this study, we implemented SA in an attractor neural network

model with distributed representations and created a unified framework for the two approaches. Our

models assume a synaptic depression mechanism leading to autonomous transitions between encoded

memory patterns (latching dynamics), which account for the major characteristics of automatic

semantic priming in humans. Using computer simulations, we demonstrated how findings that chal-

lenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural

consequence of our present model’s dynamics. Puzzling results regarding backward priming were

also given a straightforward explanation. In addition, the current model addresses some of the differ-

ences between semantic and associative relatedness and explains how these differences interact with

stimulus onset asynchrony in priming experiments.

Keywords: Word recognition; Semantic priming; Neural networks; Distributed representations;

Latching dynamics

1. Introduction

Related concepts tend to elicit one another in semantic memory. This simple and intuitive

notion is firmly grounded in day-to-day experience, as well as in formal studies of human
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performance. For example, in free-association tasks, when subjects are instructed to respond

with the first word that comes into their mind given a cue word, the response is often related

in meaning to the cue (e.g., Deese, 1962); in sentence-verification tests, judgments regarding

the semantic relationships between words are usually carried out faster for words sharing

close semantic relations compared with words sharing distant relations (Collins & Quillian,

1969); in word-recognition studies implementing priming paradigms, subjects respond faster

to a target word shortly after being exposed to a related word prime, compared to when the

prime is semantically unrelated (Neely, 1991). Such findings have often been interpreted as

supporting models of semantic memory in which the organization of knowledge is, at least

partially, based on meaning-related neighborhoods.

One of the most prominent theories of semantic processing is the spreading activation

(SA) model (e.g., Anderson, 1983; Collins & Loftus, 1975; Collins & Quillian, 1969).

According to this model, concepts are represented by single units (or ‘‘nodes’’) and inter-

connected to each other in a network structure, which allows semantic activation to spread

from one unit to another. The amount of activation that spreads is determined by the

strength of the connection between two units, which represents their semantic ⁄ associative

relatedness. The stronger two concepts are related to one another, the stronger is the connec-

tion between them (e.g., table–chair compared with bed–chair and dog–chair). When a con-

cept is activated (e.g., by an external input), the activity level of its corresponding unit is set

above a certain threshold, signaling its recognition by the system. The activity building at a

particular node propagates to adjacent nodes automatically, thus elevating their activity.

The concepts activated by proxy would, in turn, activate their own surroundings, and so

activity spreads further and further in the semantic space (Fig. 1). If, during this SA process,

the activity of a unit reaches its own threshold, its corresponding word becomes consciously

perceived and available for evaluation. The SA stops when the original node is no longer

externally activated, thus letting the remaining amount of activity in the network diminish

with time and distance from origin (‘‘dissipation of activation’’).

A fundamentally different approach to modeling semantic memory is given by attractor

neural network models (e.g., Masson, 1995; Moss, Hare, Day, & Tyler, 1994; Plaut, 1995;

Plaut & Booth, 2000). The common assumption of such models is that concepts in semantic

memory are represented by the distributed activity pattern (labeled ‘‘memory pattern’’) of

an assembly of ‘‘neurons.’’ During a learning phase in which the concepts are introduced to

the network, the connectivity among the neurons gradually changes until the memory pat-

terns corresponding to the learned concepts become attractors in the network dynamics.

Semantic relations are expressed in attractor models as correlations between memory pat-

terns. In some models, this correlation is interpreted as feature overlap: If each neuron repre-

sents an explicit feature of a concept (e.g., have four legs), all concepts sharing this feature

(dogs, cats, etc…) will have similar activity in the corresponding neurons. In other models,

however, the correlation between patterns does not indicate distinguished shared features

(see Jones, Kintsch, & Mewhort, 2006; Plaut, 1995). When the network is presented with an

external cue corresponding to one of its stored memory patterns, the units’ activity is gradu-

ally driven to this pattern until the network fully settles on its attractor state. This conver-

gence represents the identification of the corresponding concept. As related concepts are

1340 I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012)

 15516709, 2012, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12007 by U

niversity O
f T

exas A
t San A

nt, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



correlated, when one concept is ‘‘activated’’ (i.e., the network converges on it), its related

concepts are partly activated in parallel. The dynamics in these networks is therefore short

lived and terminates when the steady-state activity of an attractor is reached.

Spreading activation and attractor models have often been contrasted (e.g., McNamara,

2005; Thompson-Schill, Kurtz, & Gabrieli, 1998). SA models, being less constrained than

attractor networks, are usually more flexible in accounting for various cognitive phenomena

and, indeed, have been frequently used to simulate many well-known findings in the seman-

tic memory literature (for a review, see McNamara & Holbrook, 2003). However, they are

metaphorical models, which do not offer a mechanistic account of the dynamics in question.

Hence, the traditional SA models may very well be seen as describing the dynamics in the

semantic network (albeit in quantifiable terms) rather than pointing to its underlying (biolog-

ically inspired) sources. Attractor models, in contrast, may be somewhat more limited in

their explanatory power due to their reliance on symmetric properties such as pattern simi-

larity and their lack of emphasis on long-term dynamics beyond the typical convergence

process. However, they provide mechanistic accounts of the processes involved and are

more biologically oriented than SA, relying on principles such as distributed representa-

tions, attractor dynamics, and inter-neuronal connectivity driven by biologically inspired

learning rules (e.g., Hebbian learning; Hopfield, 1982). While the biological plausibility of

distributed representations was recently put into question (Bowers, 2009), they are, never-

theless, still a consensual view in neuroscience particularly when assuming sparse represen-

tations with low correlations between them (see, e.g., Plaut & McClelland, 2010; Quian

Quiroga & Kreiman, 2010; Waydo, Kraskov, Quian Quiroga, Fried, & Koch, 2006). It is

Fig. 1. Spreading activation operates on interconnected nodes within semantic memory. When one node is

externally activated, activation spreads to related concepts, thus raising their baseline. Priming occurs when a

pre-activated concept is presented as a target.

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1341
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therefore an interesting computational question whether attractor networks can be extended

to reach explanatory power comparable to SA while retaining the principles that allow them

a certain degree of biological feasibility.

In this study, we developed a model that attempts to take a step toward unifying the prin-

ciples of SA and attractor networks into one coherent framework. We did this in the context

of semantic priming, one of the frequently used paradigms in word recognition and semantic

memory research that confronts many of the fundamental differences between the two

approaches. We show how the introduction of biologically motivated adaptation mecha-

nisms into attractor networks can lead to autonomous hopping between encoded memory

patterns, which mimics SA dynamics and, consequently, how such a model can account for

some of the basic findings in the priming literature.

An additional motivation for our work was that SA and attractor networks offer distinc-

tively different takes on the general notion of semantic activation, which tap on several key

issues in the semantic memory literature; these include the question of representation (local

or distributed), degree of semantic activation (focused or spread), and the source of semantic

and associative relatedness (static similarities between distributed representations or a prod-

uct of dynamical changes in the system). Suggesting a model that combines the classical

principles of SA and the more biologically plausible principles of attractor networks, we

hope to present some of these issues in a new perspective.

This article has the following structure: We begin by discussing how SA and attractor

models explain semantic priming and what the discrepancies between these models are.

Then, we introduce our model, followed by simulations that demonstrate its basic traits and

capability to explain previously reported semantic priming and free-association results in

human performance studies. Finally, we discuss some implications of the model and how it

may relate to several other theories in the field.

2. Semantic priming

2.1. Basic experimental findings

Since its introduction in the early 1970s (Meyer & Schvaneveldt, 1971), semantic prim-

ing has been among the most widely investigated phenomena in the research of semantic

memory. In a typical priming experiment (Neely, 1977; See Neely, 1991; McNamara, 2005,

for reviews), the participant is presented with two words in succession, the prime and the

target, with either a short or a long stimulus onset asynchrony (SOA). Frequently used pro-

cedures involve reading the prime silently and either naming the target (pronunciation task)

or deciding whether it is a real word (lexical decision task). The target could either be

semantically related or unrelated to the prime, or a nonword in case of the lexical decision

task. The semantic priming effect refers to the finding that the average reaction time (RT;

pronouncing the second word or deciding it is a real word) is shorter, and error rates are

lower when the two words are semantically related to each other, compared with when they

are unrelated. Experiments have shown that priming may reflect both facilitation (i.e., a

1342 I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012)
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prime accelerates the RT to a related target) and inhibition (the prime delays RT to an unre-

lated target) compared with a condition in which a neutral stimulus (such as a row of X’s)

takes the role of the prime.

The nature of the relations between primes and targets and how it influences the priming

effect has often been the focus of attention in the priming literature. Words can be only

semantically related (e.g., trout–salmon), could be episodically associated even without a

semantic relationship (e.g., pillar–society), or could be related both semantically and asso-

ciatively (e.g., dog–cat). Across all three types of relationships, priming is augmented for

pairs which are closely related to each other (a ‘‘strong’’ connection) compared to pairs in

which the relationship between the words is weaker (Lorch, 1982; Neely, 1991). Priming

seems to be stronger for pairs that are both semantically and associatively related (as deter-

mined by free-association norms; see Nelson, McEvoy, & Schreiber, 2004) compared with

pairs that are purely semantically related (the so-called associative boost effect; Hutchison,

2003; Lucas, 2000; Moss et al., 1994).When both semantic and associative relationships

between prime and target exist, the magnitude of priming tends to increase with SOA (e.g.,

de Groot, 1984, 1985), whereas when the prime and target are only semantically related,

priming is less affected by SOA (Lucas, 2000). Priming can also be asymmetric, so that the

size of the priming effect changes pending on which of the two words in a pair is the prime

and which is the target. This asymmetry is best demonstrated for pairs in which the words

are associatively related in one direction (e.g., stork–baby), but not in the opposite direction

(e.g., baby–stork). For such pairs, priming could be very effective when the prime and the

target preserve the association, while if presented in the backward direction (termed ‘‘back-

ward priming’’), the effect is smaller and may even disappear with sufficiently long SOAs

(e.g., Kahan, Neely, & Forsythe, 1999). Finally, word pairs in which the prime is related to

the target only indirectly through a mediating word (termed ‘‘mediated priming’’; e.g.,

lion–stripes, mediated by tiger) were shown to yield priming effects when strategic pro-

cesses related to decision making are prevented (Balota & Lorch, 1986; Neely, 1991). These

effects, however, are smaller compared to the priming of directly related items.

In general, models of semantic priming have focused on either automatic or controlled

mechanisms contributing to the effect. Controlled mechanisms refer to specific strategies

which subjects can intentionally use in an attempt to maximize the efficiency of their

response to the target, producing either facilitation or inhibition at long prime-target SOAs.

Automatic priming, on the other hand, results from the structure, dynamics, and connectivity

of the semantic storage itself and is allegedly independent of subjects’ strategies. These

mechanisms typically contribute to the facilitation of target processing, primarily at short

SOAs, without evident inhibitory effects. SA models and attractor networks account mostly

for automatic priming.

2.2. The SA account

Spreading activation theories explain semantic priming, assuming that when the semantic

node which represents the prime is activated, the activation spreads automatically to related

nodes (for review, see Neely, 1991). This wave of activation raises the baseline activity of

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1343
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such nodes and, therefore, reduces the amount of additional activation needed to bring them

above threshold when addressed bottom-up (Fig. 1). Hence, SA can facilitate the recogni-

tion of targets that follow semantically related primes, as reflected by faster RTs to such

targets. The magnitude of this facilitation is proportional to the strength of the connection

between the prime and the target nodes; therefore, SA can naturally account for the positive

relation between the magnitude of the priming effect and the strength of the semantic con-

nection. As activation propagates beyond the immediate neighbors of the prime, SA

accounts not only for priming based on direct semantic relatedness but also for mediated

priming. Moreover, as the level of activation is reduced by distance from origin, SA cor-

rectly predicts that the magnitude of the mediated priming effect should be smaller than that

of direct priming.

Spreading activation theories often do not make a clear distinction between semantic and

associative connections and exploit the same mechanism to account for both semantic and

associative priming (Lucas, 2000). As the reciprocal connections between two nodes in the

SA network need not be equal, asymmetric priming can readily be produced. However, dif-

ferences between semantic and associative priming cannot be accounted for by SA theories

due to the lack of distinction between these two types of connections. In addition, backward

priming, which is evident for items with no prime-to-target relations, could not be easily

explained by SA mechanisms because only a unidirectional connection between the corre-

sponding nodes should be present in such cases. Finally, SOA effects on priming are pre-

dicted only when assuming that the typical time of activation spread is in the order of

hundreds of milliseconds. If, however, activation spreads very quickly (e.g., Lorch, 1982;

Ratcliff & McKoon, 1981), no such effects should exist.

2.3. The attractor-network account

Attractor networks account for semantic priming by relying on the fundamental assump-

tion that semantically related concepts have correlated representations (e.g., Masson, 1995;

Moss et al., 1994; Plaut, 1995; Plaut & Booth, 2000). When the prime is presented, the

activity pattern of the network begins to converge on its corresponding attractor. As distrib-

uted representations imply, by definition, that neurons are shared among different memory

patterns, convergence to the attractor representing the prime necessarily activates some of

the neurons included in the memory patterns that represent its related concepts. As a result,

when the target is presented and the network begins traveling toward its attractor, fewer neu-

rons will have to change their activation status when the transition is from a prime to a

related (correlated) target compared to when it is to an unrelated target. As the prime pattern

constitutes an attractor of the network dynamics, it tends to resist changes in neuronal acti-

vation applied by the presentation of the target; therefore, the fewer the neurons which need

to change their status during the transition, the less resistance would the transition face and,

consequently, the faster the network would converge to the target’s attractor, reflecting its

recognition. Hence, neural networks with distributed representations and attractor dynamics

can easily account for the acceleration of word recognition in semantic priming experi-

ments.1 In addition, if stronger semantic relatedness is interpreted as stronger correlations,

1344 I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012)
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the above account can easily explain the dependence of priming on the strength of the

prime-target semantic relations.

Attractor networks, however, struggle to explain several specific features of priming.

First, as indirectly related prime-target pairs should have uncorrelated representations (as

there are no direct relations between them), mediated priming is not easily accounted for by

such models. Second, as the dynamics ends with the convergence on the prime, it places

strict limitations on the time window during which SOA can influence priming unless the

convergence process is assumed to last for seconds. Third, as priming in such networks

depends on correlation, which is a symmetric trait, they cannot easily account for asymmet-

ric priming. Finally, relying on pattern correlations as the main explanatory tool, attractor

models cannot distinguish between semantic and associative connections.

Some of the above deficiencies have been addressed in various ways. For example,

several models (Moss et al., 1994; Plaut, 1995) showed that associative relations can be

formed in the network independently of semantic relations. If, while the network is

trained, certain concepts are coupled so that they frequently appear in succession, the net-

work may learn this temporal consistency. Later, in a priming simulation, when the same

concepts appear as prime and target in the order they were learned, the network would

tend to converge on the target faster than when an unassociated pair is used, thus demon-

strating associative priming independent of semantic relations. It also allows associative

priming to be asymmetric and increase with SOA (Plaut, 1995). However, asymmetry in

pure semantic priming, which is still based on correlations in these models, cannot be

explained by this mechanism.

An additional attempt to address a weakness of attractor network models of semantic

priming regarded the effect of mediated relationships. Some authors postulated that indi-

rectly related word pairs actually have a weak direct relatedness between them, allowing

mediated priming to occur in attractor networks much in the same way as direct priming

(e.g., Jones et al., 2006; McKoon & Ratcliff, 1992; Plaut, 1995). This suggestion, however,

is challenged by several empirical findings (e.g., Jones, 2012) and its validity is strongly

debated in the literature (see, e.g., McNamara, 2005). All in all, attractor dynamics seems to

lack some of the flexibility that SA dynamics offers and, consequently, falls short in

accounting for various priming results which SA models can comfortably address.

3. The current model

Following the traditional separation between levels of processing (e.g., Borowsky &

Besner, 1993; Smith, Bentin, & Spalek, 2001), we speculate the existence of three different

computational levels, represented by three networks: orthographic, lexical ⁄ phonological,

and semantic. In line with other connectionist models (e.g., Huber & O’Reilly, 2003;

McClelland & Rumelhart, 1981; Seidenberg & McClelland, 1989; see also Plaut, 1997), we

assume that visual input containing words activates the orthographic layer, where letters are

identified. The output of this process is fed into the lexical ⁄ phonologic network where real

words are recognized and fed forward to the semantic network where the word’s meaning is

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1345
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represented. Importantly, these processes are interactive all the way down: The semantic

network can influence the lexical network by feedback, and so is the case between the lexi-

cal and the orthographic networks.2 Top-down effects contribute to semantic priming: When

a newly arrived word (the target) is related in some way to a word which the semantic net-

work is ‘‘tuned’’ on (the prime), the lexical network can recognize this target faster than if

the prime and the target are not related because both the bottom-up and the top-down

streaming contribute to the recognition process. When a neutral stimulus (i.e., a stimulus

which does not represent a word) is presented to the lexical network, neither the lexical nor

the semantic network is activated and no information transfer occurs (see McNamara, 2005;

for a similar conceptualization in an interactive-activation model)3.

Being concerned here primarily with semantic effects, we fully modeled and simulated

only the lexical and semantic networks, as they are directly involved in the manifestation of

this phenomenon. All other processes, including the visual input, the activity in the ortho-

graphic network, and its output, were unified to a simple external bottom-up input arriving

to the lexical network. The lexical and semantic networks were modeled as attractor neural

networks with sparse, binary representations and continuous-time dynamics (see Hopfield,

1982, 1984; Tsodyks, 1990). Sparse representations have lately been supported by neuro-

physiologic evidence and are considered the rule in cortical codes (e.g., Waydo et al.,

2006).

3.1. The semantic network

3.1.1. Basic properties
The semantic network in our model is a fully connected recurrent network composed

of 500 units (‘‘neurons’’). Memory patterns encoded to the network, representing con-

cepts (here-to-end labeled ‘‘concept patterns’’), are binary vectors of size 500, with ‘‘1’’

indicating a maximally active unit and ‘‘0’’ an inactive one. The representations are

sparse (i.e., a small number of units are active in each pattern) with p being the ratio of

active units (p<<1, equal for all patterns). When an external input attempts to activate

units that are part of a specific memory pattern in the network, the activity of the entire

network is driven by the internal connectivity to gradually converge on this pattern. The

connectivity matrix between the units assures the patterns’ stability. External inputs are

always excitatory.

The units themselves are analog with activity xi in the range [0,1] and reach binary values

when converged on one of the memory patterns. The activity of the ith unit obeys a logistic

transfer function of the form:

xiðhiÞ ¼
1

1þ e�
hi
T

ð1Þ

With T being a gain parameter,4 hi represents a low-pass filtered version of the instanta-

neous local input to the unit. Following Herrmann, Ruppin, and Usher (1993), the local

input obeys the following linear differential equation:

1346 I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012)
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sn
dhi
dt
ðtÞ ¼ �hiðtÞ þ

XN

j¼1
JijðtÞxjðtÞ � kð�xðtÞ � pÞ � hþ Iexti ðtÞ � hext

� �
þþgi ð2Þ

Here,sn is the time constant of the unit, xj is the activity of the jth unit (with �x indicating

average over all units), N is the number of units (500 in our case), p is the sparseness of the

representations mentioned earlier, k is a regulation parameter which maintains stability of

mean activation, and h is a constant unit-activation threshold, which can also be seen as

global inhibition (see Herrmann et al., 1993, for details). The [...]+ symbol indicates a

threshold linear function, such that [x]+ = 0 for x < 0, and [x]+ = x otherwise. The use of

this function allows the external input to the unit,Iexti ðtÞ, to influence the network activity

only if it surpasses some constant external threshold hext. Finally, gi is a noise term drawn

from a Gaussian distribution with standard deviation gamp and temporal correlations scorr

(see details later). The (maximal) connectivity matrix of the network is determined

according to a Hebbian-inspired rule (Tsodyks, 1990):

Jmax
ij ¼

XP

l¼1

ðnl
i � pÞðnl

j � pÞ
Npð1� pÞ ð3Þ

In(3), P is the total number of memories encoded into the network, and ~nl is the lth

memory pattern.

Relatedness between concepts is implemented in the model as correlations between mem-

ory patterns (reflecting the degree of overlap between them), defined for two patterns, ~nl

and, as:

mð~nl;~ntÞ ¼
XN

i¼1

ðnl
i � pÞðnt

j � pÞ
Npð1� pÞ ð4Þ

The higher two concepts are related, the stronger their correlation is; unrelated patterns

have a correlation near 0.

3.1.2. Latching dynamics
In most attractor networks which were used to simulate semantic priming, the dynamics

lead the network to converge to a certain pattern from which only a new external input could

drive it away. A few studies, however, have suggested the possibility of an additional, long-

term dynamical process (compared with the relative short one which governs the conver-

gence phase) based on neuronal adaptation mechanisms. Experimentally, adaptation

mechanisms have been assumed to take part in several cognitive functions operating on

different levels of processing and a variety of timescales, ranging from visual mechanisms

(e.g., perceptual priming; Huber & O’Reilly, 2003) to lexical mechanisms such as phonetic-

to-lexical processing (e.g., the verbal transformation effect; Warren, 1968) and lexical-to-

semantic processing (as in the semantic satiation effect; Amster, 1964; Lambert & Jakobovits,

1960; Tian & Huber, 2010). Many of these effects were shown to be captured by network

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1347
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models implementing neural adaptation between different computational layers (e.g., Huber

& O’Reilly, 2003; see General Discussion for more details). In attractor networks with mul-

tiple steady states, adaptation mechanisms can prevent units from maintaining a constant

firing rate and make the network unable to hold its stability for long. Therefore, the network

state autonomously leaves the initial attractor and converges to a different one. The process

may repeat again and again with the network ‘‘jumping’’ from one attractor to another, sim-

ulating what may be seen as free associations. This type of jumping was termed ‘‘latching

dynamics’’ by Treves (2005) and was investigated by his group (e.g., Kropff & Treves,

2007; Russo, Namboodiri, Treves, & Kropff, 2008), as well as by others (Herrmann et al.,

1993; Horn & Usher, 1989; Kawamoto & Anderson, 1985). Mechanisms that cause adapta-

tion can range from dynamic thresholds (e.g., Herrmann et al., 1993) to dynamic synapses

(e.g., Bibitchkov, Herrmann, & Geisel, 2002). It was also found that there is a greater ten-

dency for network transitions between correlated patterns than between uncorrelated ones.

This bias occurs because neurons in attractor networks are typically noisy and hence do not

adapt at exactly the same rate. Consequently, when some neurons are already incapable of

maintaining their activity due to fast adaptation, other neurons belonging to the same mem-

ory pattern may still maintain their activity. As a result, the network leaves the original

attractor and settles to a correlated attractor in which the slowly adapting neurons are still

active (see Herrmann et al., 1993).

We implemented adaptation in the semantic network using short-term synaptic depres-

sion. This process has been shown to exist in cortical synapses (e.g., Tsodyks & Markram,

1997) and is thought to have several computational advantages (e.g., Pfister, Dayan, &

Lengyel, 2010). Yet other adaptation mechanisms would have led to similar results.

Short-term synaptic depression was modeled according to Tsodyks, Pawelzik, and Mark-

ram (1998). In line with this model, the synaptic efficacy of each unit (i.e., the efficiency of

its synaptic transmission to other units) decreases linearly with its activity:

dsiðtÞ
dt
¼ 1� siðtÞ

sr
�UxmaxxiðtÞsiðtÞ ð5Þ

Here, si is the synaptic efficacy of the ith unit, sr is the time constant of recovery of the

synaptic efficacy, and U is the utilization of the available synaptic resources. The term

xmaxrefers to a hypothetical maximum firing rate of a unit (e.g., 100 spikes ⁄ sec), and it was

needed because in the original equations (Tsodyks et al., 1998), the firing rate of the units

was not bounded by the range [0,1] as it was in our case. The synaptic strength for a given

efficacy at a given time is determined as the maximal weight multiplied by the efficacy:

JijðtÞ ¼ Jmax
ij sjðtÞ ð6Þ

The result of adding short-term synaptic plasticity to the units is that the stability of a pat-

tern cannot be maintained by the network for long. This is because the efficacy of both the
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excitatory synaptic connections among the active units in the pattern and the inhibitory con-

nections from the active units to silent units decreases with time. Consequently, after a given

time, the network will leave the attractor and converge to a different one. During this time,

depleted synapses have the opportunity to recover.

3.1.3. Noise
The noise term in our network, gi, is drawn from a normal distribution with temporal cor-

relations, independently for each unit. Temporal correlations on the order of tens of milli-

seconds are evident in physiologic data and may reflect filtering processes associated with

synaptic integration (Zador, 1998). In addition, synchronous activity of external networks

may also lead to temporal correlations in the noise, which may have important computa-

tional consequences (Mato, 1999). In our model, the correlations cause occasional ‘‘drifts’’

in the units’ activity consisting of noise-driven sporadic rises or decreases which last for

more than a few milliseconds (in contrast to the white noise case, where the lack of temporal

correlations allows only instantaneous sporadic changes). These drifts are important as they

allow a wide variety of transitions between patterns induced by the latching dynamics.

Although typically the network jumps from one memory pattern to a strongly correlated

one, it could nevertheless perform occasional transitions to less strongly correlated patterns.

If the temporal correlations were set to zero, transitions were almost always from one pat-

tern to the one most correlated to it. In addition, the noise amplitude itself influences the sta-

bility of the attractors and, consequently, affects the rate of transitions in the semantic

network. Its value was set to allow a transition rate which fits previously published experi-

mental results. Different values can slow or even halt transitions.

3.2. The lexical network

Like the semantic network, the lexical network in our model is fully recurrent and com-

prised 500 units. We labeled the memory patterns in the lexical network as ‘‘word pat-

terns.’’ The equations governing its dynamics are similar to those of the semantic network,

with two important changes:

1. There are no correlations between the word patterns in the lexical network. This is not

meant to indicate that there are no lexical relations in natural languages (indeed, such

relations obviously exist, at least at the phonological level, e.g., ‘‘rat’’–‘‘bat,’’

‘‘cable’’–‘‘table’’), but merely to ensure that such relations would not add unnecessary

noise to our simulations. In fact, typical semantic priming experiments control for such

possible confounds by selecting prime-target pairs that bare no lexical ⁄ phonological

relations within a pair. Anyhow, this is a simplification which should not influence the

average pattern of results.

2. The lexical network does not implement latching dynamics. This is another simplifica-

tion, which further reduces the variability in the lexical network to allow emphasizing

the effect of the semantic network on lexical convergence. Moreover, from a concep-

tual point of view, it stands to reason that semantic networks are more associative in
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nature than lexical networks, as indicated by association norms (e.g., Nelson et al.,

2004); free associations are based more on the meaning of words rather than their lexi-

cal ⁄ phonologic properties. In practice, latching dynamics was eliminated in the lexical

network by decreasing the rate of the synaptic depression, U, to a very small level.

Indeed, although there is still no direct evidence of systematic differences in synaptic

depression between brain regions, Tsodyks and Markram (1997) have found that there

is a wide variety of synaptic depression rates among neocortical neurons which

strongly affect their computational properties.

3.3. Connectivity between the networks

The links between the lexical and semantic networks are based on connections between

active units in corresponding patterns (Fig. 2). An activated unit belonging to a certain word

pattern in the lexical network sends excitatory connections to all active units in the corre-

sponding concept pattern of the semantic network and vice versa. Given the distributed

nature of the semantic representations and the correlations in the semantic network, the acti-

vation of one word pattern in the lexical network activates to different extents all semanti-

cally related concept patterns in the semantic network. This partial activation is fed back to

the corresponding word patterns in the lexical network and adds to its activation by the bot-

tom-up input from the orthographic network. The bottom-up input is also excitatory and

determines to which word pattern the lexical network will converge by influencing only the

corresponding active units in this pattern.

To allow some separation in the computational processes within each layer, the semantic

and lexical networks respond to external inputs if, and only if, they surpass a certain thresh-

old (see Eq. 2). Lexical-to-semantic connections are set to be stronger than the semantic-to-

lexical connections. The logic for this asymmetry is that in word-recognition experiments,

the required behavior is governed by stimulus-dependant processes, which encourage

Fig. 2. The architecture of the model. Patterns representing related concepts are correlated in the semantic net-

work but uncorrelated in the lexical network. Active units of two toy example patterns representing ‘‘dog’’ and

‘‘cat’’ are marked. Connections between networks are from active units of a pattern in one network to all the

corresponding active units in the other network. For simplicity, only some of these connections are drawn.
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bottom-up information transmission. Top-down processes (like the influence of semantics

on lexical access) are not essential and can be readily reduced by scaling down the appropri-

ate connection strength.5 This reduction, however, is not absolute and still allows for some

top-down semantic influences as the ones causing semantic priming. As a consequence of

this asymmetry, the lexical network affects the activity in the semantic network more

quickly than the other way around (the threshold could be surpassed more easily due to the

stronger connections) and allows it to be influenced by the semantic network only while it is

also activated by the bottom-up external input.

To further increase the independence of each layer, the lexical-to-semantic connections are

also subject to synaptic depression with a slow recovery time (for a similar approach, see

Huber & O’Reilly, 2003). This causes the bottom-up influence of the lexical network to

diminish after a typical time interval, letting the semantic network engage in latching without

further disturbance (until a new bottom-up external input arrives and the lexical network con-

verges to a new pattern). Nevertheless, we assume only minimal suppression of semantic-to-

lexical connections, as these links are, as described above, weak in the first place. In addition,

the bottom-up external input to the lexical network is modeled as constant for as long as a

word is assumed to be visible, and it diminishes abruptly when the visual word disappears.

3.4. Basic behavior of the lexical and semantic networks

Fig. 3 demonstrates typical examples of one-trial activations of the network in a typical

semantic priming simulation. Correlation of the activation pattern along time for each net-

work with each of its stored patterns (including the real memory patterns and the neutral

one) during a trial is presented in that figure in different colors, and convergence to a spe-

cific pattern is indicated by its number appearing on top. The lexical network follows the

external input by converging to the corresponding memory pattern and keeping stability

until a new input arrives. In contrast, the semantic network converges to the appropriate

memory pattern, only to jump to other attractors in a serial manner, hence presenting latch-

ing dynamics. When a new external input arrives, the semantic network stops its transitions

and quickly converges to the corresponding new memory pattern a little after the lexical net-

work has done so (its reaction is much quicker than the lexical network’s due to the strong

lexical-to-semantic connections).

4. Simulation 1

This simulation examined the free dynamics of the semantic network and its relation to SA.

4.1. Method

The simulation was written in Matlab 8a and run on an Intel Core 2 Quad CPU Q6600

with 2.4 GHZ and 2 GB of RAM. In all the numeric simulations, one numeric step

represented 0.66 ms.

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1351

 15516709, 2012, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12007 by U

niversity O
f T

exas A
t San A

nt, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.1.1. Encoded patterns
Seventeen different memory patterns were encoded in the semantic and lexical networks.

Within each network, these patterns comprised binary vectors with equal mean activity and a

very sparse representation.6 In the semantic network, the basic correlations between patterns

were a priori set as following (Fig. 4A): Four groups, each containing four patterns, formed

‘‘semantic neighborhoods’’ (patterns 1–4, 5–8, 9–12, and 13–16), so that each pattern in a

neighborhood was correlated with the other patterns in its neighborhood, and with few excep-

tions (see below), no correlations existed between the neighborhoods.7 All correlations within

a semantic neighborhood were equally strong. The 17th memory pattern was a ‘‘baseline’’

pattern to which the network was initialized at the beginning of each trial, and it was not cor-

related to any of the other patterns. This baseline ensured that the network would not readily

converge to one of the ‘‘real’’ patterns when the trial begins and its stability allowed the net-

work to maintain activity until the prime began influencing it (see Rolls, Loh, Deco, &

Winterer, 2008 for another example of modeling baseline activity as a stable state of the system).

To produce indirect relatedness (in addition to direct relatedness) in the semantic net-

work, we modified the above basic encoding structure so that a correlation was introduced

between a pattern in one neighborhood and a pattern in a different neighborhood. This corre-

lation was based on other units than the ones forming the correlations within each neighbor-

hood. For example, whereas patterns 1–4 formed a semantic neighborhood and patterns

9–12 formed a different semantic neighborhood, we slightly changed the encoding of

(A)

(B)

(C)

Fig. 3. Correlation of the network state with its different memory patterns as a function of time. Each pattern is

indicated by a line with a different color (not all correlation lines are visible at all times, as often they coincide).

Moment of convergence to a specific pattern is indicated by the corresponding pattern number above the appro-

priate line. (A) Typical dynamics of the semantic and lexical networks. The semantic network presents latching

dynamics, while the lexical network is stable. (B and C): More examples of the dynamics of the semantic net-

work, showing the stochasticity of transitions.
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patterns 2 and 9 to introduce a correlation between them (see the vector examples in

Fig. 4A). Consequently, patterns 1 and 9 became indirectly related (mediated by pattern 2).

Similarly, we correlated pattern 3 with pattern 13, which resulted in an indirect relatedness

between patterns 1 and 13.

In the lexical network, all 17 patterns were unrelated to each other. The 17th pattern was,

again, the initial state for the network and was not linked through top-down or bottom-up lexi-

cal–semantic connections to any of the 17 patterns in the semantic network (thus forming a

‘‘neutral’’ pattern; see Simulation 2 for a more extensive discussion of ‘‘neutral’’ patterns).

4.1.2. Experimental procedure
The simulation comprised 100 trials. Each trial began with the lexical and semantic net-

works converged on their respective neutral patterns. An external input (always pattern 1)

was presented to the lexical network immediately after the trial began. This input was a

(A)

(B)

(C)

Fig. 4. (A) Patterns used in Simulation 1. The left column shows the semantic organization of patterns by neigh-

borhood. The right column presents a simplified illustration of the relatedness as represented by vector correla-

tions in the network for several representative concepts (brown ⁄ light blue colors representing values of 1 ⁄ 0).

(B) Patterns used in Simulation 2. The left column shows the semantic organization of patterns by neighborhood,

with weak relatedness indicated in black lines and strong relatedness by red lines. The right column presents

examples of prime-target pairs used in the simulation trials, organized by relatedness condition. (C) Example of

expected chain of events in a semantic priming simulation. Lexical network converges to the prime pattern,

followed by convergence of the semantic network. When target appears, the lexical network converges to the

appropriate target pattern under the influence of the semantic network. No latching dynamics is assumed in the

example.
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binary vector corresponding to the appropriate memory pattern of the lexical network (1’s

in the to-be activated units, 0’s in the rest). One hundred milliseconds after trial onset the

external input was removed and the network’s activity followed the dynamic equations

without further interference, for a total period of 3,000 simulated milliseconds (4,500

numeric steps). No additional input was presented in the current simulation. Correlation of

the momentary state of each network with each pattern, for each time point along each trial,

was stored and averaged offline.

4.2. Results

The mean correlation between the state of the semantic network and each of its encoded

memory patterns was computed for each time point over trials. Fig. 5 presents these

Fig. 5. Spreading activation behavior of the semantic network in Simulation 1. Mean correlation of various

memory patterns with the state of the network is displayed at five points in time after prime onset. Middle of the

x-axis corresponds to the prime pattern (pattern 1), to its right and left are two of its related patterns (pattern 2

and 3), and next are the indirectly related patterns (patterns 9 and 13). Further to the right and left are double-

indirect patterns (patterns 12 and 16), and on the edges are two unrelated patterns (patterns 5 and 6). Because of

finite size effects of the network, unrelated patterns do not yield an exact 0 correlation, and the displayed results

are corrected for such bias. The mean correlation presents a ‘‘spreading out’’ behavior, initially concentrated on

the prime, then spreads to the related and indirectly related patterns, and finally distributed evenly between many

patterns. In very large networks, the final stage is expected to be distributed between many more patterns, yield-

ing an insignificant correlation to each of them, a situation resembling the activation dying out.

1354 I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012)
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correlations for five different time points after the prime onset. On the x-axis, the middle

point shows the mean correlation with the actually presented prime concept, the two adja-

cent points to left and right of the center show mean correlations with two of the neighbor

patterns (patterns 2 and 3), the two points further to the right and left show the correlation

with two indirectly related concepts (patterns 9 and 13), and the two most extreme points

show the correlation of the network state with two unrelated concepts (patterns 5 and 6). As

can be seen in this figure, the mean correlations followed the principles of SA. Initially, the

concept represented by the external input has the strongest activation (correlation), its

directly related concepts are activated to a smaller degree, and concepts not related to it are

not activated at all. With time, as semantic transitions occur (due to the latching dynamics),

the mean activation of the initial concept decreases, while the related concepts are activated

more and more. Indirectly related concepts show some activation, with a peak rising later.

Unrelated concepts receive no activation at all throughout this period. After 3,000 simulated

milliseconds, the mean correlation with each of the network’s patterns is distributed more or

less equally, corresponding to a nearly deactivated state of the whole network (which can be

seen as a statistical implementation over aggregated trials of the dissipation of activation

with time which characterizes SA theories).

5. Simulation 2

As elaborated in the Introduction, SA and attractor networks have often been contrasted

using the semantic priming paradigm. Whereas semantic priming in SA stems from the exis-

tence of connections between related concept nodes, attractor networks mostly attribute

priming effects to correlations between patterns. These two explanations differ, among other

things, in their prediction about mediated priming: As mediated items are not related

directly, they should not be correlated; therefore, simple attractor networks (without latching

dynamics) are unable to account for mediated priming results. SA, on the other hand, allows

activation to spread for long distances in semantic space and, therefore, predicts mediated

priming. In the present simulation, we tested whether our model yields basic semantic prim-

ing effects and how different prime-target relations, including mediated relations, modulate

priming. In particular, we explored whether the pattern of priming effects in the simulation

corresponds with findings previously reported in human studies.

5.1. Method

The general methods were similar to those used in Simulation 1.

5.1.1. Strong versus moderate and direct versus indirect relations
To produce varying degrees of direct relatedness, we changed the encoding of two spe-

cific patterns in each neighborhood (e.g., patterns 1 and 2), so that their correlation was

higher than all the others within the neighborhood (e.g., the correlations between patterns 1

and 3, 1 and 4, 2 and 3, 2 and 4). Independent units were used to produce this additional

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1355
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correlation so that it would not interact with any already-encoded correlation. This proce-

dure resulted in two levels of relatedness within a neighborhood.

Mediated priming was produced like in Simulation 1. Specifically, we introduced a corre-

lation between pattern 2 and pattern 9, and between patterns 6 and 13. Consequently, pat-

terns 1 and 9 and patterns 5 and 13 became indirectly related (mediated by patterns 2 and 6,

respectively; see Fig. 4B).

5.1.2. Experimental procedure
Each trial consisted of the presentation of two inputs, a prime followed by a target,

each being one of the pre-encoded lexical patterns. The relatedness between the prime

and the target could be strong, moderate, indirect, or unrelated. For example, as patterns

1 and 2 were a strongly correlated pair within the semantic neighborhood of patterns 1–4,

and pattern 2 was also correlated outside its neighborhood to pattern 9, then presenting

the patterns 1 and 2 as prime and target, respectively, formed a strong and directly related

condition, 1 and 3 a moderate and directly related condition, 1 and 9 an indirectly related

condition, and 1 and 16 an unrelated condition (see examples for all experimental condi-

tions in Fig. 4B). In addition, a neutral condition was presented with the prime being pat-

tern 17 and the target being any of the ‘‘real’’ word patterns (1–16). Since no

connections exist between the neutral patterns of either network, this condition was, in

fact, equivalent to not presenting the prime at all.8 Primes and targets were randomly

chosen from within the possible combinations for each condition, with 100 trials in each

condition.

Each trial started with the presentation of an external input to the lexical network which

served as ‘‘prime.’’ After 100 simulated milliseconds, this external input was removed, and

a new external input corresponding to the target was presented to the lexical network with

250-ms SOA (cf., Balota & Lorch, 1986). The RT to a target was measured from its onset

until the convergence of the lexical network (‘‘correct’’ convergences to the target attractor

were always achieved). Convergence was defined as the network’s state reaching a 0.95 cor-

relation with the relevant memory pattern. Fig. 4C presents an example of this chain of

events in a non-neutral trial (for simplicity, no semantic transitions were assumed in this

example).

5.2. Results

The lexical network’s RT was computed separately for each prime-target relatedness

condition (Fig. 6A).9 RTs were shortest for the strongly related pairs (M = 47.81 simu-

lated milliseconds), followed by the moderately related pairs (M = 64.81 ms), the indi-

rectly related pairs (M = 79.1 ms), and the unrelated and neutral pairs (M = 90.27 and

M = 88.13 ms, respectively). Fig. 6B presents the main facilitation effects (relative to the

neutral condition) compared with data from human experiments (taken from Lorch, 1982;

Balota & Lorch, 1986). Mirroring the empirical findings in humans, there was a gradient

of the priming magnitude which decreased both with semantic relatedness and with direct-

edness of this relation.
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5.3. Discussion of simulations 1 and 2

The results of the first simulation showed how an attractor neural network with latching

dynamics can implement SA on average over trials. This pattern is manifested in the seman-

tic network and it is based solely on its characteristics, with no dependence on the character-

istics of the lexical network (or even its mere existence). The only condition for activation

to ‘‘spread’’ from a particular network pattern to its ‘‘neighbors’’ is that the input to

the semantic network would diminish and let the latching dynamics run freely (as was

implemented in the present model by postulating short-term synaptic depression in lexical-

to-semantic connections). The pace at which the activation spreads depends on the rate of

transitions from one attractor to another during the latching dynamics. The faster the transitions

are the faster activation spreads.

As mentioned above, latching may be achieved by various mechanisms. Yet the general

characteristics of the SA as revealed by the present simulation did not depend on the specific

adaptation mechanism which has been implemented. Rather, the most important factor

which determines where and how quickly the activation spreads is the correlation between

the patterns. Transitions occur more frequently between correlated patterns and within a

semantic neighborhood than between uncorrelated patterns contained in different neighbor-

hoods (Fig. 3). In other words, the correlations between concept patterns play the role

played by the connections’ strength between various word nodes in the original SA theory.

However, the probability of the network to jump from one pattern to another is not simply

determined by the correlation strength between two concepts. Rather, this probability is

determined by the relative strengths of the correlations that a particular concept pattern has

with all the other concept patterns. For example, if one pattern (‘‘pattern A’’) has a 0.1

correlation with another pattern (‘‘pattern B’’) and no correlations with any other pattern,

(A) (B)

Fig. 6. (A) Mean convergence time of the lexical network for the various conditions of Simulation 2. (B) Facili-

tation effects in Simulation 2 compared with human experiments. Human results taken from Lorch, 1982 (table

2, 150 and 300 ms SOAs; table 3, 200 and 400 ms SOAs; high and low dominance exemplars representing

strong and moderate connections); and Balota & Lorch, 1986 (table 2, 250-ms SOA only). Error bars represent

±1 standard error of the mean.
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there is a high probability that the network would jump from pattern A to pattern B. On the

other hand, if pattern A is also correlated with another pattern, C, with a 0.2 correlation, the

most probable jump would be from A to C rather than from A to B; the probability of the

jump from A to B is reduced, even though the strength of the corresponding correlation is

the same. This characteristic of our model resonates with Anderson’s model of SA (1983),

in which the connection strengths between nodes are scaled by the total amount of connec-

tions (a hypothesis which is essentially required to account for other linguistic phenomena,

such as the fan effect; see Anderson, 1974). It is also in line with some spreading activation

models in which the connection strengths are determined by free-association norms (e.g.,

Spitzer, 1997). In such models the connection strength from dog to cat, for example, is

determined by the probability that cat will be the first association of dog in a free-associa-

tion task. The total strength of connections from dog to all of its associates must sum up to 1

(as it represents probability), and therefore, each of the connections is influenced by all the

others. This is exactly what should be expected from the way SA is implemented in our

model, which, being expressed on average over trials, provides, in fact, a natural scaling for

the connections’ strength. Indeed, one could see the activity of nodes in the original SA

model as an average manifestation of both the correlations between the patterns in our

semantic network and the probability of associative occurrences achieved from association

norms. As will be demonstrated in Simulation 3, the probability of a transition from one pat-

tern to another in our model resembles, in principle, the probability of a corresponding asso-

ciation between two concepts in free-association norms.

There is, however, an important distinction between the average performance of the

semantic network in our model and that of the original SA model. In our network, spreading

is temporarily interrupted by relaxation periods which correspond to the network reaching

an attractor. In other words, activation does not spread in a monotonic manner like in the

original SA model, but, rather, in jumps which reflect the dynamical transitions from one

attractor to another. This implies that at very short SOAs, the ‘‘spreading’’ is actually

entirely dependent on the network’s correlations as it relaxes on the prime’s attractor and

may, therefore, seem instantaneous with respect to the prime’s immediate neighbors (cf.,

Plaut, 1995). Only at longer SOAs can transitions participate in the dynamics and allow

spreading to carry on. Thus, immediate and distant (i.e., indirect) neighbors in our model

have different status in terms of the activation spread, in contrast to the classical SA in

which no such distinction exists.

The results of the second simulation demonstrated how the dynamics in the semantic net-

work affects the convergence time of the lexical network. As can be seen in Fig. 6, mimick-

ing semantic priming effects in humans, the time needed for the convergence of the lexical

network on the target’s word pattern is shorter if prior to its appearance the semantic net-

work converged on a concept pattern that is correlated (i.e., related) to that target’s concept.

This result is achieved because a number of units that are activated in the semantic network

are connected to the units that would be activated by the target pattern in the lexical net-

work, and this partial top-down pre-activation facilitates the convergence of the lexical net-

work on the target. As the magnitude of facilitation is proportional to the amount of shared

units, the stronger the prime and the target concept patterns are correlated in the semantic
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network, the faster would the target ‘‘recognition’’ by the lexical network be (compare the

turquoise and the beige bars in Fig. 6A). Unrelated prime and target patterns do not share

any active units and, indeed, did not facilitate each other.

In addition to direct priming, mediated priming effects were also apparent in Simulation

2. These effects stemmed from trials in which the semantic network committed a transition

from the prime’s pattern to another pattern before target onset. Often, this new pattern is

correlated both to the prime and to the upcoming target (as in the example of lion being

related to tiger, which is related to stripes). Consequently, when the target appears, the

semantic network will already be converged to a pattern correlated to it (even if the original

prime is not). This latter correlation yields the observed mediated priming effect.

As the semantic-to-lexical connections in our model are purely excitatory, we expected

only facilitatory effects and, therefore, the unrelated and neutral targets, both representing

patterns uncorrelated to the prime, should have yielded equivalent convergence times. This

was, indeed, the general observed result of the simulation: Although the unrelated and the

neutral conditions were not identical,10 the difference between these two conditions was

very small, an order of a magnitude smaller than the facilitation effect (Fig. 6A). Therefore,

our results, based on our implementation of neutral trials, are in agreement with the view

that automatic priming mechanisms primarily contribute to facilitation of related targets.

6. The emergence of asymmetric priming effects and their modulation by SOA

In the previous simulations, we showed how the combination of correlation between con-

cept patterns and synaptic adaptation in the semantic network yields a spreading-activation-

like dynamics, allowing for both direct and mediated priming to emerge. Next, we will show

how these two mechanisms combine in sophisticated ways to account for previously

reported asymmetry in associative relations. We will demonstrate how this asymmetry is

modulated by SOA and how it can be related to the difference between semantic and asso-

ciative priming, as well as to backward priming.

There is an important distinction between the correlation of two patterns and the probabil-

ity of transitions between them. This can be shown by a simple example: Imagine that pat-

tern B is correlated to the same degree to both patterns A and C, whereas neither A nor C is

correlated to other patterns. If the network rests on pattern A and then jumps, it will almost

definitely jump to pattern B, its only correlated pattern. On the other hand, if it rests on

pattern B, jumps to A and C would be equally probable. Therefore, although A and B are

symmetrically correlated, the transition probabilities from one of them to the other are

asymmetric. This example demonstrates the fundamental characteristic of our network’s

dynamics: The transition probabilities from one pattern to another are influenced by the

entire structure of pattern correlations encoded in the network.11

In priming experiments, the transition probabilities can influence RT. When the semantic

network frequently jumps to the pattern representing the upcoming target (before its actual

appearance), the mean RT to the target should decrease considerably (and priming effects

should consequently increase) as many more units representing the target concept contribute
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to facilitating the convergence of the lexical network. If, however, transitions are mostly to

a pattern other than the target, RTs may not change or may even increase, depending on

where the network jumped to. Asymmetry in priming may therefore arise as a function of

the asymmetry in jumps. This asymmetry should interact with SOA: With short SOAs, there

are fewer semantic transitions, and therefore the asymmetry in probabilities has less impact.

With longer SOAs, semantic transitions are probable and, consequently, asymmetry

emerges.

A common finding in the priming literature is that the size of the priming effect is modu-

lated by SOA to different degrees, depending on the prime-target relatedness type. Whereas

the priming effect for associated pairs increases with SOA (de Groot, 1984, 1985; de Groot,

Thomassen, & Hudson, 1986; Lorch, 1982; Neely, 1991), semantic priming for related but

unassociated pairs is less influenced by SOA and may even decrease for backward-related

pairs (Kahan et al., 1999; Lucas, 2000). Several authors suggested that this difference

between the SOA effects on associated and unassociated pairs may be attributed to episodi-

cally learned connections between linguistic items based on co-occurrence. Episodically

learned associations could be formed either between concepts in the semantic system (e.g.,

Herrmann et al., 1993; Silberman, Miikkulainen, & Bentin, 2005) or between words in the

lexical system (Fodor, 1983; Lupker, 1984). These connections were suggested to affect

priming mostly at long SOAs, assuming that time allows more efficient processing of the

prime, leading to a greater impact of the learned prime-target associations (Plaut, 1995).

Alternatively, other authors explained the SOA-dependent increase in priming between

associated pairs relying on controlled mechanisms, which supposedly take time to initiate

and therefore contribute to priming only at long SOAs (e.g., Neely, 1977; Neely, 1991).

In our model, SOA is expected to influence the magnitude of priming as transitions in the

network cause the focus of semantic activation to change, in a given trial, from the prime to

its surrounding neighborhood. This SOA dependency occurs without assuming any particu-

lar connectivity beyond the correlation structure of the encoded patterns and, most impor-

tant, is expected to differ for symmetrically and asymmetrically associated pairs because of

their different transition probabilities. The difference between associative and semantic

priming may therefore be a product of such asymmetry.

7. Simulation 3

The goal of this simulation was to explore how a more complex structure of network cor-

relations affects the transitional probabilities of the network and the priming effect, as a

function of SOA. The correlation structure was determined by the association norms of four

specific concepts within one semantic neighborhood (Nelson, McEvoy, & Schreiber, 1998)

and was designed to mimic their mutual free-association probabilities. First, we showed

how such probabilities can be roughly implemented in the semantic network despite its

small size and small variety of correlation strengths. Second, we verified that several known

characteristics of association response times (e.g., Goldstein, 1961; Schlosberg & Hein-

eman, 1950) are roughly reproduced by the transition latencies in our model. Third, we
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examined the priming effect and its modulation by SOA for prime-target pairs that differ in

their forward and backward transition probability.

7.1. Method

7.1.1. Encoded patterns
The present simulation focused on a semantic neighborhood consisting of patterns analo-

gous to four animal concepts—dog, cat, mouse, and kitten. Based on the human-derived

association norms, the cat pattern was strongly correlated to both dog and mouse, and mod-

erately correlated to kitten. All other correlations within the neighborhood were weak. Each

animal concept, with the exception of kitten, also had idiosyncratic moderate correlations

with concepts outside the neighborhood (kitten was the exception because, according to the

association norms, it hardly has any significant forward or backward connections outside the

neighborhood). Dog, in particular, had an idiosyncratic correlation with the concept beware,

which belonged to another semantic neighborhood consisting of beware, danger, caution,

and careful, all weakly correlated among themselves. The total number of memory patterns

encoded in the network (including the baseline pattern) was 17, as in previous simulations.

A summation of the structure is depicted in Fig. 7.

7.1.2. Experimental procedure
First, we assessed the probability of associations between the animal concepts as reflected

by the first transition from each stimulus. This assessment was based on 4,000 trials in

Fig. 7. Structure of the semantic memory used in Simulation 3. Sixteen memory patterns representing 16 differ-

ent concepts were used, with three degrees of correlation strengths. Width of the connecting lines represents the

strength of the correlations.
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which each of the four animal concepts were presented 1,000 times to the lexical network as

single stimulus. Trials duration was 1 second, to elevate the chances of at least one transition

in the semantic network. Identically, 1,000 trials were run with the concept beware, to

examine its tendency to jump to the dog concept. The observed probabilities of these transi-

tions are presented in a color-bar graph next to their real values based on the human associa-

tion norms (Fig. 8A). As can be seen, albeit not identical, the transition probabilities of the

network closely resembled the trends observed in the human data. Specifically, the concept

patterns corresponding to dog and cat were associates of each other, while dog was also a

moderate associate of beware, but not vice versa. The concept cat had, in addition, some

moderate associations with kitten and mouse. Of particular interest, the association to kitten
was dramatically asymmetric, with kitten leading to cat almost nine times more often than

the other way around.

(A)

(B) (C)

Fig. 8. Behavior of the model using associative and non-associative pairs in Simulation 3. (A) First-transition

probabilities of the five main concepts in the network. Probabilities are indicated by colors ranging from 0 (dark

blue) to 1 (red). Columns represent the presented words and rows represent their associations. The simulation

results are compared with data taken from human association norms (Nelson et al., 1998). (B) Associative

strength (measured as frequency of occurrence) versus standardized transition latency of first transitions in the

network. (C) Number of associates of the five main concepts in the network versus their mean transition latency.
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Next, we calculated the average transition latency of each of the associations produced

by the network by computing the time from the appearance of the stimulus until the first

transition has concluded, separately for each association. Following this stage, priming was

simulated as in Simulations 1 and 2, with a target following a prime at a pre-designated

SOA. Several representative prime-target pairs within the animal neighborhood were used,

consisting of both high and low mutual transition probabilities. In addition, a couple of pairs

consisting of one concept within the neighborhood and one concept outside it were used.

For some of the strongly associated prime-target pairs, priming simulations of the corre-

sponding backward direction (where the prime and target switched roles) were also con-

ducted. Finally, neutral trials (with targets chosen randomly from the memory patterns)

were conducted for comparison with the related trials. Each priming pair was repeated for

100 trials, and for 7 SOAs equally distributed from 150 to 450 ms.

7.2. Results

7.2.1. Association latencies
Experimental research on association norms often finds a negative correlation between

association strength (defined in terms of frequency of occurrence for a given cue) and asso-

ciation response time (e.g., Schlosberg & Heineman, 1950), as well as a positive correlation

between the number of associates of a cue and the average latency of all of its associates

(Flekkoy, 1973; Goldstein, 1961). To examine how well the network associations resemble

human data, we examined whether these trends exist in our results.12

Association strength (defined here as the observed probability of a particular transition)

and association latency were not correlated when the entire spectrum of associations from

the five stimuli were considered. However, it was evident that the latencies for a particular

stimulus were strongly affected by the total number of active units that stimulus shared with

all the other concept patterns. Stimuli that shared a large number of units with other patterns

(such as dog, cat, and mouse) were less stable and tended to yield considerably faster transi-

tions than stimuli that shared few units (kitten and beware). This difference, which blurs the

correlation of interest, might not be as robust in the representations of real concepts in

humans, and, therefore, it is most probably a confound created by the specific encoding

structure used in our simulations (see Discussion). We therefore controlled for the difference

in the total number of shared units by computing the z-scores of each of the latencies, that

is, comparing each raw latency value with the association latencies of its deriving stimulus

(e.g., the z-score of cat–kitten was computed in comparison with the average transition

latencies stemming from cat, while the z-score of kitten–cat was computed compared with

the average latencies stemming from kitten). These latency z-scores are plotted against asso-

ciation strength in Fig. 8B. Corresponding to published findings in humans, there was a sig-

nificant negative correlation (r = ).57; p < .04) between the measures, indicating that

strong associations tended to occur faster than weaker associations.

We also looked at the total number of associates of each of the five patterns as a function

of its average association latency (over all the associations stemming from it; naturally, this

computation used raw RT values and not z-scores). These data are plotted in Fig. 8C. Again,
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mirroring findings from human associations, we found a positive correlation between these

two measures (r = .97). Although only five data points were available in the present data,

this correlation was highly significant (p < .007).

7.2.2. Priming effects
The priming effects of the pre-specified prime-target pairs, as a function of SOA, are pre-

sented in Fig. 9. Three notable results are apparent: First, the priming of a target by a

strongly associated prime was higher, across SOAs, compared with priming between unas-

sociated pairs (compare the three upper curves to the rest in Fig. 9). Second, the priming

effects for strongly associated pairs increased with SOA (Fig. 9, red, blue, and purple

curves), while the priming for non-associative pairs was unaffected by SOA or even

decreased (cyan, yellow, pink, and green curves). Third, pairs that were asymmetrically

associated to each other, as reflected by their transitional probabilities, yielded asymmetric

priming, with the asymmetry growing with SOA (compare purple vs. cyan and brown vs.

green curves).

7.3. Discussion

The results of Simulation 3 demonstrate the importance of the correlation structure

between encoded patterns in determining the transition probabilities between concepts and

the consequence of these probabilities on priming. Although the structure of the semantic

network in our model is determined by the symmetric correlations between concepts, the

transition probabilities resulting from this structure are not symmetric, reflecting directional

associative relations as well. This characteristic allows the semantic network in the model to

Fig. 9. Mean facilitation effects as a function of SOA for the prime-target pairs presented to the network in

Simulation 3. Error bars represent ±1 standard error of the mean.
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exhibit complex dynamics yielding asymmetric associative priming as well as an interaction

between the effect of associative strength and SOA. The most important conclusion from

this simulation is that differences in the association strength between concepts and the

resulting differences in their priming patterns can be based solely on the correlation struc-

ture of the encoded memories without requiring the formation of explicit associative con-

nections between specific words through designated training (cf., Plaut, 1995).

The observed transition latencies between memory patterns matched several reported

characteristics of experimental RTs in free-association tasks (Flekkoy, 1973; Schlosberg &

Heineman, 1950). The association strength between concepts was negatively correlated with

the z-scores of the transition latencies, although not with the absolute latency values. The lack

of correlation with the absolute latency values could be explained by the fact that the concept

patterns in our simulation were apparently divided into two distinct groups, one which con-

tained patterns sharing a large number of active units with other patterns (dog, cat, mouse)

and another which contained patterns with few shared units (kitten, beware). The difference in

average latencies between the two groups was relatively large (�150 ms) and probably

blurred the effect of association strength on latency. Indeed, separate post hoc examinations of

the association strength within each of the two groups in isolation yielded negative correla-

tions with the absolute scores just as for the z-scores of the combined group (although these

correlations did not reach statistical significance due to the small number of data points in

each group separately). Whether the discrepancy between the two groups is of theoretical

interest remains to be explored. It may be that the difference does not have an analog in the

representations of real concepts in the brain and, therefore, should be considered an artifact

stemming from the relative small size of our network (that limits the maximum amount of

encoded concepts and prevents equating the number of shared units across all patterns).

Another possibility, however, is that this difference in the number of shared units does reflect,

to some extent, real diversity in the way concepts are represented in the semantic system; in

that case, a more comprehensive comparison of the associative latencies may require identify-

ing how the total number of shared units of a pattern in the network maps to known character-

istics of real concepts (examples of which may include, perhaps, semantic set size and

familiarity). However, as the patterns in our network represent real concepts only crudely, we

leave further investigation of this issue to future studies in which a more transparent analogy

between concepts and their computational representations will be determined.

Another feature of the transition latencies that resembled human associative RT data was

the positive correlation between the average association latency from a stimulus and the

total number of associates of this stimulus. That is, the more associates a concept has, the

longer the associates’ latency is on average. As shown by Flekkoy (1973), this result cannot

be only a by-product of the negative association between association strength and associa-

tion latency. In our network, this correlation stemmed from the fact that the stimuli tended

to produce occasional idiosyncratic transitions (i.e., transitions from a stimulus to a concept

pattern not correlated to it directly, such as kitten–beware), and this tendency differed sys-

tematically between the five stimuli. The fewer units a stimulus pattern shared with other

concept patterns, the more idiosyncratic transitions it produced. As, as discussed above, con-

cepts that shared few units also tended to yield slower transitions, a correlation emerged.
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The results of Simulation 3 did not portray precisely the difference between semantic and

associative connections. Rather, they suggest that these two types of connections can be

based on a similar underlying mechanism and that the common differentiation between

them may not necessarily represent a substantial connectivity difference in terms of the neu-

ral network involved. An associative connection between two concepts exists when there is

a high probability for a transition from one to the other. Semantic connections, on the other

hand, cannot be defined as simply. Specifically, the fact that two patterns are correlated does

not necessarily mean that they are semantically related. It might be argued that semantic

relations can usually be attributed to a group of concepts with dense interconnectivity (as in

the case of the animal concepts which all share some connections), thus forming semantic

neighborhoods; but the emergence of a more elaborate semantic structure might be the prod-

uct of reading out information from the semantic network at higher cognitive stages. Be that

as it may, the lack of an absolute definition for semantic relations in our network did not pre-

vent it from portraying the priming results observed in human studies, differentiating

between associated- and unassociated-related pairs. Priming of associatively related prime-

target pairs was stronger compared with unassociated pairs and also increased with SOA

(cf. de Groot, 1985; de Groot et al., 1986; Hutchison, 2003; Plaut, 1995). In contrast, prim-

ing of unassociated pairs did not rise with SOA, and for backward-related pairs such as

dog–beware, it even decreased. This general ‘‘advantage’’ of associated over unassociated

pairs is caused in our model by two factors: First, with sufficiently long SOAs, the semantic

network tends to jump from the prime to an associated target, increasing priming signifi-

cantly. Second, associatively connected pairs generally (although not always) tend to be

more strongly correlated than unassociated pairs, and this allows them to have a higher

influence on the lexical network. These findings are reminiscent of the ‘‘associative boost’’

effect (e.g., Lucas, 2000; Moss et al., 1994), in which associative + semantically related

pairs tend to elicit stronger priming compared with pairs which are only semantically

related. As our model asserts that the same correlation mechanism can be responsible for

both types of relatedness (associative and semantic), the very fact that there is an association

between words in a pair implies that, first, the words in that pair are typically more strongly

correlated than the words in most unassociated (e.g., purely semantically related) pairs to

begin with, and second, that there are frequent transitions between the words comprising this

pair which further increase their priming effect. Therefore, the ‘‘boost’’ stemming from the

additional associative connection becomes a straightforward outcome.

A related view, attributing both semantic and associative relations to correlations between

distributed representations, is proposed by semantic-space models of priming such as HAL,

LSA, or BEAGLE (for a review, see Jones et al., 2006). In these models, an extensive

vocabulary of words is represented in vectorial space according to an elaborate co-occur-

rence measure of these words in large text corpora (the models differ in the specific way in

which they instantiate this mapping). Priming is attributed by such models to the differences

in the vector correlations of unrelated versus related word pairs. Similarly, differences

between associative and semantic priming are attributed to correlation differences between

the representations of associatively and semantically related pairs. These models fit well

with distributed attractor networks (and ours in particular) because in both types of models,
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pattern correlations are the source of priming. Attractor models, however, add dynamics to

these static representations and therefore can better illustrate how priming is modulated by

SOA and task constraints.

Another important phenomenon that our results address is backward priming. To reiter-

ate, backward priming refers to pairs that are related in only one direction (Stork–Baby), but

nevertheless yield priming even when presented as prime and target in the reverse direction.

Previous explanations of backward priming have usually attributed this effect to controlled

processes that operate solely for lexical decisions; this is because, unlike automatic priming,

these processes are thought to allow bidirectional evaluation of the stimulus pairs. This

account, however, was found to be inconsistent with later demonstrations of backward prim-

ing in pronunciation tasks at short SOAs (Kahan et al., 1999; Thompson-Schill et al., 1998).

A different attempt to account for backward priming was made within the framework of dis-

tributed network models (e.g., Plaut & Booth, 2000). This approach presumes that a back-

ward association between a target and a prime is sufficient for their semantic representations

to share some semantic features. In that case, backward priming should not be different from

the usual forward priming because the correlation between the representations of the two

words is symmetric. This hypothesis was supported by findings showing that at short SOA

asymmetrically related pairs elicit similar priming effects whether presented in the forward

or backward direction (Thompson-Schill et al., 1998). Nevertheless, although successfully

accounting for backward priming effects at short SOAs (regardless of task), the ‘‘shared fea-

tures’’ account cannot easily explain why backward priming does not appear in pronuncia-

tion under longer SOA conditions (Kahan et al., 1999; Peterson & Simpson, 1989).

Acknowledging these problems, Kahan et al. (1999) suggested that other mechanisms might

contribute to backward priming at short SOAs, but no such mechanisms have been specified

to date (see also Franklin, Dien, Neely, Waterson, & Huber, 2007).

Our model can easily account for the SOA-dependent backward priming. Consistent with

previous models based on distributed representations, backward priming in our model, like

forward priming, stems from the existence of correlations between primes and targets (as in

the pair Dog–Beware). However, due to the directionality of the associations of such pairs

(Figs. 8A and 9), the initial correlation decreases with SOA as transitions become more

probable, thus diminishing the impact of the prime and eliminating the backward priming

effect. Therefore, our model naturally accounts for a nonstrategic, automatic backward

priming effect which strictly depends on short SOA conditions (for a related view, see the

discussion about backward priming in ACT* in McNamara, 2005).

To conclude this discussion, it is important to acknowledge that although the present sim-

ulation exhibited significant asymmetric properties, we do not suggest that direct one-to-one

connections between semantically unrelated concepts are completely absent. It is reasonable

to assume that certain concepts do, indeed, tend to activate each other while not having any

overlapping representations, and that some of the particular asymmetries in association

norms could be attributed to these cases. Nevertheless, we emphasize that at least some of

the differences between semantic and associative priming do not require additional elabora-

tions and can be attributed to the correlation structure alone. It is also worth noting that the

tendency of the priming effect to increase or decrease, as seen in Fig. 9, depends on the
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existence of one single transition; more transitions might, in fact, reduce the effect, as is

already seen to some degree at the longest SOA (see two upper curves in Fig. 9). This

reduction can be prevented if one assumes conditions in which transitions beyond the first

are banned. Indeed, as we show in a more recent study (I. Lerner, S. Bentin, & O. Shriki,

unpublished data), our network can consistently produce strong priming effects when vari-

ous parameters in the network, including parameters that affect the rate of latching dynam-

ics, are strategically modulated. As we show there, these modulations can reflect the

involvement of known controlled processes operating in semantic priming such as expec-

tancy and semantic matching.13

8. General discussion

The main goal of this study was to develop a unifying model of semantic activity in

which principles of distributed attractor networks and SA mechanisms are combined to

explain semantic priming phenomena. Adding biologically motivated neural adaptation

mechanisms to an attractor neural network, we first showed how semantic transitions yield a

dynamic development of the mean correlations of the network, implementing SA when

averaged over trials. Next, supporting the mechanistic account of our model, we replicated

known semantic priming patterns observed in human studies and suggested how transitions

in the network can be linked to free associations in humans. Furthermore, based on its char-

acteristics, the model accounted naturally for findings that were insufficiently explained by

previous attractor neural network models, such as mediated and asymmetric priming. In

addition, the model provided new insights about debated issues in the semantic priming

domain such as the mechanisms involved in backward priming as well as the difference

between semantic and associative relatedness and its relation to feature overlap in attractor

networks.

8.1. Implications of the present model

The dynamics of our model predict several effects that were insufficiently explored by

previous human semantic priming studies. Among those, perhaps, the most central predic-

tion, although the most difficult one to test, is that RTs should have a higher variance when

transitions have the opportunity to facilitate the response (e.g., in related trials) than when

transitions cannot facilitate the response (e.g., in unrelated trials) or do not occur. This pat-

tern should exist because latching dynamics is stochastic (i.e., different semantic transitions

may occur in each trial at varying probability) and, therefore, the spectrum of possible states

which the semantic network can take due to transitions increases with time. For example,

after initially converging on cat, the network can later converge on milk or dog, then on

white, cheese, or friend and leash, and so on. As the convergence time of the lexical network

is influenced by the momentary state of the semantic network, word-recognition times

should vary accordingly, depending on the specific mix of shorter and longer RTs over

trials. This predicted outcome, which stems from the dynamics of our model, is actually a
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version of the well-known increase in variance with time for ‘‘random walk’’ processes.

Testing it in humans, however, is not trivial; RT variability is determined by many factors,

including nonsemantic ones like motor control and attentional lapses. Therefore, subtle vari-

ations in RTs at the order of 20–30 ms, like the ones caused by semantic facilitation effects,

result in very small increases in the RT variance which are likely to be concealed by much

stronger sources of variability. In addition, the degree of variability is also known to be

influenced by the absolute lengths of the RTs with longer RTs yielding larger variability (as

a result, e.g., of the noise having more opportunity to affect the dynamics with longer times;

e.g., Ratcliff, Gómez, & McKoon, 2004). Therefore, to examine this prediction with suffi-

cient reliability, it is required to (a) test a very large number of participants and (b) balance

the expected mean RTs of the examined conditions (e.g., related vs. unrelated) such that the

danger of confounding differences in variance with differences in means is reduced. A pos-

sible way to avoid the need to equalize the absolute RTs across the two conditions is to

examine a slightly different form of the prediction, namely that the RT variance should

increase with SOA in the related condition but remain roughly the same (or increase less)

across SOAs in the unrelated condition. Using this procedure, variances are compared

within conditions instead of between conditions and the influence of the mean RTs should

play a smaller role. Nevertheless, a large number of participants would still be required.

A second central prediction stemming from our model is concerned with the time course

of mediated versus direct priming. As the spreading of activation in our model occurs in

jumps rather than continuously, these jumps might induce nonlinear changes in the pattern

of semantic priming effects along time, which should be expressed differently in different

types of related pairs. For example, the effect of SOA on priming in a pronunciation task

should reveal different time courses for indirectly related and directly related pairs. Medi-

ated priming is expected to have a late onset compared with direct priming, as it requires a

semantic transition to take place, whereas direct priming does not. Examining direct and

mediated priming, while changing the SOA in small steps, is expected to reflect this differ-

ence. Whereas the time course of priming for different relatedness conditions have been

examined in the past, to our knowledge no direct examination of mediated versus direct

priming at very short SOAs has been conducted to date. Examining priming effects over

several SOAs when the prime and the target have different degrees of relatedness, both

Lorch (1982) and Ratcliff and McKoon (1981) found no difference in the onset of priming

as a function of the type of prime-target relation. However, Lorch used strong versus weak

categorical relations, as well as high versus weak associative relations, all of which are

direct relations and, thus, irrelevant to the comparison between direct and indirect priming.

Ratcliff and McKoon’s materials were experimentally linked to each other during a learning

phase in which the stimuli pairs appeared in paragraphs, separated by a varying degree of

interleaved words. Whatever the sources of these priming effects were, the possibility that

‘‘indirectly’’ linked words created in this paradigm are in fact directly related was not suffi-

ciently controlled for. Indeed, the lack of interaction and the consequent conclusion that SA

is almost ‘‘instantaneous’’ is actually in complete agreement with the priming pattern

expected to emerge using related pairs with various degrees of direct relatedness (Plaut,
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1995). Therefore, a true comparison of the time coarse of direct and mediated priming still

awaits well-controlled examinations.

8.2. Comparison to other attractor models

Most of the previously suggested attractor network models of word recognition and seman-

tic priming did not properly account for several behaviorally established effects such as medi-

ated priming and differences between associative and semantic priming (e.g., Masson, 1995;

McRae, de Sa, & Seidenberg, 1993; Sharkey & Sharkey, 1992). Two models fare better in that

respect. One has been proposed by Plaut (1995; Plaut & Booth, 2000; see also Moss et al.,

1994). Plaut’s model suggests a basic distinction between semantic and associative relations,

which is expressed in the way memory patterns are learned by the network (and, conse-

quently, in the eventual connectivity between units). This model, therefore, provided a reason-

able distinction between the priming effects resulting from the two types of relations. It also

demonstrated how inhibition-dominance patterns of priming at long SOA could be readily

explained by neuronal properties without assuming the involvement of controlled processes

(Plaut & Booth, 2000). However, Plaut’s model does not easily handle mediated priming

without assuming direct links between indirectly related pairs, and it generally predicts a

decrease in priming with SOA for purely semantically related primes and targets, contrary to

recent findings (Lucas, 2000). Both these restrictions might be accounted for by the limited

long-term dynamics that characterizes Plaut’s model, as well as most other attractor network

models. Nevertheless, the principles of Plaut’s model do not contradict the mechanisms dis-

played in the current study and the two models could actually be combined. For example,

Plaut’s model describes in some detail the learning mechanisms that allow patterns to become

attractors in the network. It may very well be that introducing adaptation mechanisms into

Plaut’s model would lead his network to present dynamical behavior resembling the dynamics

of our current model and, consequently, allow investigating how different learning schemes

contribute to the transition probabilities which the network eventually exhibits.

A second attractor neural network model of priming that addressed some of the limita-

tions mentioned above was recently introduced by Lavigne and Darmon (2008) and Brunel

and Lavigne (2009). These authors attempted to relate the semantic priming phenomena to

simple associative priming in monkeys during a paired-associate task. Developing a realistic

integrate-and-fire neural network inspired by real-time recordings from monkeys’ cortical

neurons, the authors showed how similar mechanisms may operate in both cases. Most rele-

vant to our discussion, this network could actually be conceived as directly implementing

SA behavior: Concepts are characterized in their network by specific populations of neurons

which, when active, send excitatory inputs to other populations representing related con-

cepts. Although some degree of attractor dynamics is evident in that model (observing retro-

spective activation of neurons even after an external stimulus is shutdown), the network

allows several patterns to be activated simultaneously and thus resembles the parallel activa-

tion of nodes in traditional SA models. Specifically, priming stems from the preactivation of

the appropriate neural population prior to the appearance of the target. Mediated priming is

also apparent much in the same way as in the SA model.
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Although a full appreciation of Lavigne and colleagues’ cortical network model is

beyond the scope of our current study, it is nevertheless important to note a fundamental dif-

ference between that model and most other attractor networks (including ours). The cortical

network model allows each neuron to participate in the coding of only one memory pattern.

Therefore, in contrast to other attractor models of semantic priming, the representations in

the cortical network model are actually not distributed and, as a result, allow for several

concepts to be concurrently activated to the same degree. In other words, this model is best

seen as a working memory system that indistinguishably holds several items together, with

no conservation principle to force the activation to dissipate with semantic distance. This

dynamics contradicts some basic premises of older semantic memory models, like Ander-

son’s ACT, as well as most versions of the Collins and Loftus’ SA model. It also prevents

the network from simulating associative thinking, where one association replaces another in

a serial manner. Finally, no distinction between semantic and associative connections is

evident in the model.

Finally, another model that calls for comparison to our network is Huber and O’Reilly’s

nROUSE (‘‘neural mechanism for responding optimally with unknown source of evidence’’;

Huber & O’Reilly, 2003). Like us, these authors used synaptic depression in their model as

the basic mechanistic account for several cognitive phenomena. nROUSE assumes a network

architecture consisting of visual, orthographic, and lexical ⁄ semantic layers with excitatory

feed-forward connections between layers and inhibitory connections within each layer. Addi-

tional excitatory feedback from the semantic to the orthographic level produces a simple

attractor dynamics in which these two layers converge on consistent activity that corresponds

to the visual input presented at that time. The gist of the model is that all connections are sub-

ject to synaptic depression; therefore, with time, any activity induced in the network by exter-

nal inputs gradually decreases and renders the activated nodes less sensitive to additional

activation by new inputs. This mechanism thus allows producing many cognitive adaptation

effects ranging from word repetition priming (Huber & O’Reilly, 2003) to primed face detec-

tion (Rieth & Huber, 2005). Basic semantic priming results are also accounted for in the

model (Huber & O’Reilly, 2003), showing an advantage for related over unrelated targets

which peaks at a certain SOA but decreases with longer prime durations (similar to some of

the reported effects for non-associated prime-target pairs discussed in the present paper).

Unlike the current model, however, nROUSE was not aimed at accounting for processes

which depend on elaborate semantic structure and, therefore, its semantic network has not

been developed to simultaneously contain many concept patterns producing rich attractor

dynamics. Nevertheless, as the basic mechanism of both models relies on synaptic depression,

they are essentially completing each other and can likely be combined to produce a compre-

hensive architecture that could account for many cognitive effects in different domains.

8.3. Generalizations

We move now to consider some of the more general properties of the current model.

First, we should point out that although we chose to implement our model with a Hopfield-

like network and a latching mechanism based on synaptic depression, the results do not

I. Lerner, S. Bentin, O. Shriki ⁄ Cognitive Science (2012) 1371
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depend on these choices. Hopfield networks may be seen as a prototype of associative net-

works with distributed representations and gain their power from their simplicity and their

straightforward Hebbian-derived connectivity. In principle, however, other types of attractor

networks could also be used as long as concepts in these networks are represented in a dis-

tributed manner and relatedness is translated to correlations between patterns of activity.

Similarly, synaptic depression is only one way of implementing adaptation mechanisms

leading to latching dynamics and was chosen for its biological plausibility and experimental

support (Tsodyks & Markram, 1997). Yet other biological mechanisms can lead to the same

effect (e.g., Herrmann et al., 1993) and could be implemented if supported by evidence.

Second, the vector representations stored in our network were handcrafted to demonstrate

the network’s dynamics; therefore, they represented concepts, as well as relatedness between

concepts, only at the most abstract level. Surely, real representations in the brain have a far

more elaborate structure. However, it is precisely the general character of our vectors which

gives the model its strength and allows it to relate to past conceptualizations of distributed rep-

resentations (e.g., feature-based representations and representations based on lexical co-occur-

rence measures). The emphasis in this study is on the way distributed representations; however,

they are defined, develop with time due to adaptation mechanisms of the active units—not on

the representations themselves. Nevertheless, some aspects in the model might go along more

comfortably with representations that do not require correlations to be dependent on common

features (at least in their simple sense of distinguishable traits such as has four legs being a fea-

ture of dog); this is because correlations between concept patterns, as assumed in Simulation 3,

can reflect relations that are not necessarily based on common features (e.g., dog and beware).

In that respect, the model’s viewpoint is more consistent with vector-space representations such

as BEAGLE, which assume that correlations can represent any kind of relations, including dif-

ferent types of semantic and associative relatedness (e.g., Jones et al., 2006).

Third, from a purely mathematical point of view, our model suggests that transitions in

the content of associative thought may be approximated by a Markov chain process (see,

e.g., Meyn & Tweedie, 1993) where each component in the state vector of the Markov

model corresponds to the probability of a certain concept being activated. The whole state

vector would therefore correspond to the probability of the semantic network being con-

verged on any of its stored concepts at a given time, and the initial state (where only one

particular concept is activated due to an external stimulus) can be viewed as a binary state

vector with ‘‘1’’ in the appropriate component and ‘‘0’’ otherwise. The transition matrix of

such a Markov chain model should reflect the basic transition probabilities between any two

concepts and could derive its exact values from association norms (for a related idea con-

cerning the origin of language, see Kropff & Treves, 2007; also, for a demonstration of the

relation between hidden Markov models and synaptic depression in a different context, see

Huber, 2008). Such process can then be combined with a measure of similarity, serving as a

proxy for the degree of the correlation between concepts, to provide a crude approximation

of the progress of semantic activation over time. For example, assume that a certain concept,

designated as xk, is activated at time 0 and our goal is to estimate its mean activation after n
time steps (over all realizations of the possible transitions occurring during this time). Using

a transition matrix P (driven by association norms) and a similarity measure between two
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concepts S(x, y) (taken, e.g., from vector-space representations such as LSA or BEAGLE),

the state vector representing the distribution of the network states over the stored concepts

after these n time steps is given by Pn~x0 with ~x0 representing the binary vector which corre-

sponds to the initial state where the network is converged on concept xk. The mean activa-

tion of this concept after n steps, based on the similarity measure and the distribution, will

therefore be given by
P
i

Sðxk;xiÞ � ½Pn~x0�i, with i going over all stored concepts. Such com-

putation is not unique to the initially activated concept and can be carried out for any other

stored concept. Thus, a simple formalization of this sort allows making crude predictions on

the degree of activation of concepts, starting from an agreed initial state, which can be com-

pared to findings in paradigms such as semantic priming. It may also serve as a simple way

for comparing the basic principles of our model and those of other models, such as

BEAGLE. However, it is important to emphasize that this abstract form of the model should

be regarded with caution. First, association norms lack significant information regarding the

matrix P as they do not contain the probability of the network remaining converged on the

current state (i.e., the diagonal of P). Second, and even more important, the full network per-

formance is not completely analogous to a stationary Markov chain, as the probabilities of

transitions are not stable over time. It is necessary, therefore, to carefully choose the correct

time window as the equivalent of one step in the Markov chain to make the analogy as pre-

cise as possible. A more accurate analogy of the associative transitions would require using

a high-order Markov chain (see, e.g., Russo, Pirmoradian, & Treves, 2010). In other words,

the transition probabilities may depend not only on the last attractor but also on preceding

attractor states. In this case, the state vector should be extended to a spatiotemporal pattern

that takes into account several time steps.

The acceleration of RTs when the activity in the semantic network matches the bottom-

up input to the lexical network reflects the integration of prior knowledge about semantic

relations (as revealed by the transition probabilities) with instantaneous information. Such

an integrative process may form, for example, the foundation of top-down facilitation in

reading, in which a word in a sentence is processed faster and more accurately given the pre-

vious context. Statistically speaking, the probability for the lexical network to converge to a

certain word pattern is proportional to both the conditional probability of this word given

the external input, and the conditional probability of this word given the previous word. In

this sense, the model implements a basic form of Bayesian inference in a neuronal architec-

ture (cf., Knill & Pouget, 2004).

Finally, it is important to emphasize that we made no assumptions about conscious

awareness while proposing this network. Specifically, associative transitions in the semantic

network are not necessarily coupled with a transition in the content of conscious thought.

To date, consciousness is still an ill-defined term and does not need to be a binary trait (e.g.,

Mandler, 2005). One could argue that ‘‘full’’ conscious awareness of a concept may depend

on its mutual activation by different subnetworks in the brain, and particularly linguistic

modules like the mental lexicon (see, e.g., Gazzaniga, 2000). In that case, in terms of our

model, it is not enough for a certain concept to be activated by the semantic network to

reach full consciousness; rather, it might also require the activation of its lexical representa-

tion in the lexical network, as well as other neural mechanisms.
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9. Conclusion

We presented a distributed attractor neural network model that simulates semantic mem-

ory and accounts for semantic priming effects. Assuming synaptic adaptation mechanisms,

we have shown that the semantic network may engage in associative transitions from one

pattern to another (latching dynamics), which may be analogous to the SA mechanism

widely accepted as an account for automatic priming. Our model can also be captured as

forming a foundation for associative thinking in general. For example, in a recent study, we

showed how the current model, operating under accelerated rate of semantic transitions, can

also account for the typical patterns of semantic priming in schizophrenia as well as for sev-

eral thought disorders characterizing the disease (Lerner, Bentin, & Shriki, 2012). While it

is clear that various results involving complex interactions within semantic memory need

further elaborations, we believe the model presented here can constitute firm grounds for the

investigation of semantics in general and modeling semantic activity in the attractor neural

network framework in particular.
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Notes

1. Although the above analysis of priming in attractor networks describes how correlated

memory patterns facilitate one another, the term ‘‘facilitation’’ does not coincide with

its usual meaning in semantic priming literature, where facilitation and inhibition are

defined in comparison with a neutral condition in which the target is preceded by

either a word that does not bias the recognition of the target (such as BLANK), a

pseudoword (a phonologically legal but meaningless sequence of letters), or by a non-

word (a phonologically illegal string of letters). It is, therefore, crucial to define how

the neutral condition is constructed in attractor network simulations of semantic prim-

ing to define whether the effect is purely facilitatory or also includes an inhibitory

component. In neutral trials, the network is presumed to remain on some baseline state

until target onset. This baseline could be conceived in two ways: One is to assume that

the network activity in the neutral condition is distributed randomly rather than being

converged on any attractor. If this is so, then some neuronal activation in this baseline

state might be somewhat correlated to the upcoming target simply by chance, and

therefore, the transition from baseline to the target would be faster than the transition
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from an unrelated activity pattern, thus resulting in inhibition. However, as a random

baseline would not constitute an attractor of the dynamics, there will be no driving

force encouraging it to maintain its activity. This may allow changes to occur more

rapidly even compared to the related case where the network needs to escape the basin

of attraction of the prime’s memory pattern. Hence, such a neutral baseline may lead

to the unwarranted result of convergence being fastest in the neutral condition (see

Dalrymple-Alford & Marmurek, 1999). A better way to conceive the baseline state is

to assume that in the neutral condition, the starting position of the network is not ran-

dom but rather forms an attractor of the dynamics whose activity pattern is not corre-

lated to the memory patterns representing real words. In this case, the transition of the

network state from such an attractor to the activity pattern which represents the target

will not be different from the transition when starting from a ‘‘real’’ unrelated mem-

ory pattern and so no inhibition will should evident.

2. Moreover, we do not assume a strict serial chain of events. In fact, all or some of

these levels may be activated in cascade.

3. To this basic structure of the word-recognition system, two other modules could be

added. One is a decision module receiving input solely from the lexical network and

responsible for the distinction between yes ⁄ no binary choices (in a lexical decision

task). The other module is responsible for the generation of phonetic codes required

for pronunciation and receives information from both the lexical and the ortho-

graphic networks. These two modules might be necessary to make accurate predic-

tions regarding RT distributions in response to words and nonwords, which depend

on task requirements and response strategies (e.g., Balota, Yap, Cortese, & Watson,

2008). However, as the current model focuses on semantic processing rather than the

production of responses, these modules will not be addressed further.

4. The Appendix presents the values of all the parameters used in this study that, when-

ever relevant, were chosen from a biologically plausible range.

5. Indeed, this asymmetry is most probably task dependent and, if needed, might be

reversed (e.g., when a person needs to transform thoughts into words during conver-

sation). The way subjects control such connectivity scaling is not fully understood,

but it has been suggested to be the product of attention (e.g., Büchel & Friston, 1997)

and carried out by neuromodulators such as Dopamine (Cohen & Servan-Schreiber,

1992; Coull, 1998).

6. It might be noteworthy that the sparseness value used in our simulations (0.06 in the seman-

tic network, see Appendix) creates a ratio between uncorrelated memories and units that is

well within the range that allows scaling the network to the number of concepts in the entire

human semantic memory. For example, in order to hold 30,000 differentiable concepts (a

quantity based on estimations made by Biederman, 1987), our network would require

around 500,000 units. Holding a million different concepts requires fewer than 20,000,000

units. These approximated values are well below the estimated number of neurons in the

medial-temporal lobe where semantic memory is thought to reside (e.g., Harding, Halliday,

& Kril, 1998; Quian Quiroga, Reddy, Kreiman, Koch, & Fried, 2005). Correlations between

memories lower these estimates even further.
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7. As all patterns were binary vectors with sparse representations, the overlapping

active units were actually the major contributors to the correlation. Unrelated con-

cepts were created as patterns with no overlapping active units. Given the finite size

of our network, this is the optimal approximation of noncorrelation. As it turns out,

such an approximation actually led to a small negative correlation between unrelated

patterns. This small bias from 0 had no significant effects on either the behavior of

the network or the results.

8. It is well acknowledged that the choice of baseline in neutral trials of priming experi-

ments (e.g., rows of X’s; the words ‘‘BLANK’’ or ‘‘READY’’; or pseudowords driven

from unrelated concepts; see Neely, 1991; Plaut & Booth, 2000) can modulate their

resulting RTs and should therefore be chosen carefully. Ideally, a neutral trial should

have the same alerting properties as related and unrelated primes, but leave the lexical

system unbiased with respect to the target. However, it is not self-evident how these

requirements are fulfilled in designing neutral trials of attractor networks’ simulations

(see also note 1). On the one hand, it is clear that in neutral trials the lexical network

should not be encouraged to change its activity toward any specific memory pattern.

On the other hand, our choice of baseline, which was encoded simply as another attrac-

tor of the dynamics, was essentially not different than any unrelated pattern. An alter-

native could have been to initiate the lexical network to a random activity state with

the same mean activity level as any of the word patterns. One of the problems with the

latter was discussed in note 1. Another problem, conspicuous when the SOA is not

very short, is that as this random pattern would not form an attractor, as soon as the

external input diminish, the network would converge to one of the encoded patterns,

hence not allowing such a trial to be really neutral. Another possibility could be to ini-

tialize the network to a state which partially resembles one of the unrelated concepts

(with respect to the target), though not completely equivalent to it. This might be seen

as the correlate of a ‘‘pseudoword’’ prime which has been recommended for human

experiments (e.g., Plaut & Booth, 2000). In that case, the network would most likely

converge to this unrelated concept as soon as the external effect diminishes (as it bares

strong correlation with the initial state) and effectively yield an unrelated trial. The

results, therefore, would be roughly the same as with our choice of baseline. Theoreti-

cally, however, they might be less justified as pseudowords are not meant to fully elicit

the unrelated words from which they were derived.

9. The absolute RTs in our simulations (in contrast to our relative measures such as the

priming effect) are obviously much shorter than experimental RTs of real subjects as

they do not include time-consuming processes such as stimulus perception, decision

making, and motor response.

10. The small, unexpected difference between the average RTs of the related and unre-

lated conditions might be explained, admittedly, post hoc. In neutral conditions,

when the prime is not different from baseline, the semantic network does not make

any transitions until the onset of the target. In contrast, when any non-neutral prime

is presented, the network responds and converges to the corresponding pattern. Such

a transition works as a ‘‘resetting’’ device for the accumulating noise in the silent
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units: The newly active units in the new pattern reached by the network depress the

noise in these silent units. In neutral trials, this depression is weak due to the synaptic

adaptation mechanisms. Noise in these neutral trials can raise the activity levels of

those units a little above 0 and, therefore, accelerate the convergence of the lexical

network as soon as the target, any target, is presented. Such acceleration is almost

nonexistent in non-neutral trials where ‘‘resetting’’ occurs. This phenomenon may

create a kind of inhibition for unrelated targets, which was reflected in the slightly (2

simulated milliseconds) longer RTs in the unrelated compared with the neutral trials.

Note, however, that this effect is more than an order of a magnitude smaller than the

major relatedness effect and is not expected to be salient in environments with large

amount of variability (such as real RT measurements in priming experiments with

humans). Therefore, we do not consider this effect as violating our premise that the

basic priming effects in our model are purely facilitatory.

11. In fact, the influence of the correlation structure is even more complicated. The prob-

ability of a transition from a cue to a target is not only influenced by their correlation

strength and the number of patterns which are correlated to the cue but also depends

on the correlation density of the target such that targets connected to many other con-

cepts tend to resist the network from jumping to them.

12. Associations that occur very rarely (e.g., kitten–dog) provide very few data points for

the calculation of their average latency. Therefore, all such associations were com-

bined together in one group. The criterion for this inclusion was association strength of

less than 0.02. The association strength of this group was determined as the weighted

average of the association strengths of each of the particular associations. Forty-four

data points from 19 different associations were combined in this way. Similarly, the

data points of associations to concept patterns which are symmetric with respect to the

stimulus (e.g., friend and house, with respect to dog) were also combined, as any dif-

ference between them must stem from noise. Qualitatively similar results are also

achieved without these procedures, though with reduced statistical significance.

13. A complete cessation of latching dynamics might also be necessary when the network

learns to acquire the representation of new concepts. As learning is usually a gradual

process that requires the repeated presentation of relevant inputs, it is reasonable to

assume that network transitions should be avoided to allow the formation of a reliable

representation of those inputs without the risk of them being associated to a concept

which the network has randomly jumped to. The control over transitions speculated in

our additional work (I. Lerner, S. Bentin, & O. Shriki, unpublished data) may, there-

fore, serve such purpose as well.
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Appendix

A. The semantic and lexical network parameters that were used in the numerical simula-

tions of the model (units are indicated in brackets whenever relevant):

Parameter Semantic Network Lexical Network

Number of units, N 500 500

Sparseness, p 0.06 0.04

Correlation strength (% of

overlapping active units out of

total active units in a pattern)

0.1 (Strong)

0.066 (Moderate)

0.033 (Weak)

0

Unit-gain, T 0.05 0.05

Unit’s time constant, sn 7 [ms] 13 [ms]

Unit activation threshold, h 0.02 0.17

Regulation parameter, k 14.75 27.75

Maximal firing rate, xmax 100 [spks ⁄ sec] 100 [spks ⁄ sec]
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Appendix

A. Continued:

Parameter Semantic Network Lexical Network

Utilization of synapses within

each network, U[within]

0.206 [1 ⁄ spks] 0 [1 ⁄ spks]

Utilization of synapses between

networks, U[between]

Lexical-to-semantic:

0.087 [1 ⁄ spks]

Semantic-to-lexical:

0 [1 ⁄ spks]

Synaptic recovery time within

each network, sr [within]

93 [ms] –

Synaptic recovery time between

networks, sr [between]

Lexical-tosemantic: 1,333 [ms] Semantic-to-lexical: –

Input gain between networks

(Raw values. Actual values were

normalized by the number of

pre-synaptic active units in a pattern)

Lexical-to-semantic: 2 Semantic-to-lexical: 0.21

External input gain 0.56 –

Input threshold, hext 1 0.25

Noise amplitude, gamp 0.05 0.025

Noise temporal correlations, scorr 17 [ms] 17 [ms]

Convergence threshold 0.95 0.95

B. The temporal correlations in the noise were generated by filtering the noise using a

low-pass filter, which, for two time points separated by s ms, took the form:

fðsÞ ¼ gamp � e�
s

scorr
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