
Cognitive Science 38 (2014) 1562–1603
Copyright © 2014 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/cogs.12133

Integrating the Automatic and the Controlled: Strategies
in Semantic Priming in an Attractor Network With

Latching Dynamics

Itamar Lerner,a Shlomo Bentin,a,b,† Oren Shrikic

aInterdisciplinary Center for Neural Computation, The Hebrew University of Jerusalem
bDepartment of Psychology, The Hebrew University of Jerusalem

cSection on Critical Brain Dynamics, National Institute of Mental Health

Received 12 October 2012; received in revised form 6 September 2013; accepted 22 October 2013

Abstract

Semantic priming has long been recognized to reflect, along with automatic semantic mecha-

nisms, the contribution of controlled strategies. However, previous theories of controlled priming

were mostly qualitative, lacking common grounds with modern mathematical models of automatic

priming based on neural networks. Recently, we introduced a novel attractor network model of

automatic semantic priming with latching dynamics. Here, we extend this work to show how the

same model can also account for important findings regarding controlled processes. Assuming the

rate of semantic transitions in the network can be adapted using simple reinforcement learning,

we show how basic findings attributed to controlled processes in priming can be achieved, includ-

ing their dependency on stimulus onset asynchrony and relatedness proportion and their unique

effect on associative, category-exemplar, mediated and backward prime-target relations. We dis-

cuss how our mechanism relates to the classic expectancy theory and how it can be further

extended in future developments of the model.

Keywords: Word recognition; Semantic priming; Neural networks; Distributed representations;

Latching dynamics; Controlled processes; Expectancy; Semantic matching

1. Introduction

Among the most familiar distinctions in cognitive science is the one made between

automatic and controlled processes. Findings from various experimental paradigms

suggest that some cognitive processes exhibit little to no sensitivity to experimental
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manipulations of task conditions such as the time allowed to process stimuli, the salience

of target stimuli compared to distractors, or the statistical contingencies occurring over

the course of an experimental session; other processes, in contrast, exhibit great depen-

dency on these manipulations (Posner & Snyder, 1975; Shiffrin & Schneider, 1977). Such

findings gave rise to the notion that certain cognitive processes occur automatically, with-

out the voluntary involvement—or even awareness—of the individual and are thus indif-

ferent to various experimental manipulations, whereas other processes are intentionally

produced when encouraged by the appropriate experimental conditions and typically

reflect a strategic attempt to maximize performance in a given situation (see Neumann,

1984, for a review). According to this view, automatic processes are fast acting, do not

require attention, and always occur as long as the appropriate stimuli appear (e.g., a writ-

ten word will automatically elicit reading in a literate adult). Controlled processes, in

contrast, are slow to act, require attention, and are used only when an individual observes

that certain procedures may aid him/her to improve performance in a given task (e.g.,

focusing attention on whether a presented word contained the letter “T” when the task

demands it). This view of automatic and controlled processing resonates the more intui-

tive distinction, rooted in phenomenology, in which some cognitive operations are

directly influenced by one’s own free will whereas others (the most obvious example

being, perhaps, reflexive motor responses) occur “by themselves” without any conscious

or willful intervention on one’s part.

One of the domains in which the automatic/controlled dichotomy was intensively investi-

gated is semantic processing. Specifically, semantic priming—the facilitation in word recog-

nition occurring when a word is presented following the presentation of a related semantic

concept (e.g., Doctor–Nurse)—has been shown to reflect automatic contributions of the

dynamics and structure of semantic memory, as well as strategic planning executed by sub-

jects attempting to optimize the recognition process. These two types of contributions were

differently treated by theoretical accounts. Although automatic semantic priming has been

subject to quantitative modeling based on neural networks (e.g., Collins & Loftus, 1975;

Plaut, 1995), theories of controlled priming were mostly descriptive, basing their explana-

tions on qualitative terms not embedded in a precise mathematical framework (e.g., Becker,

1980; Neely & Keefe, 1989). As automatic and controlled processes have often been treated

as orthogonal in the semantic priming literature (as evident, for example, in the influential

hybrid three-process model by Neely & Keefe, 1989), detecting common mathematical prin-

ciples for these mechanisms was not considered a priority. Nevertheless, it was later shown

that, in fact, some controlled processes do interact with automatic ones during semantic

priming experiments (e.g., Balota, Black, & Cheney, 1992; Neely, O’Connor, & Calabrese,

2010). Moreover, the dichotomy between automatic and controlled processes was put into

question by other studies, casting doubt on whether pure automatic processes truly exist

(e.g., Besner, 2001; Stolz & Besner, 1999). These studies, as well as the lack of a principled

way to define what makes a process automatic from a neuronal point of view, have left this

absence of common grounds for the two types of processes undesirable. Models of

controlled processes in semantic priming, especially, now seem to be lagging behind the

more biologically oriented accounts for automatic mechanisms.

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1563
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Lately, we have published a novel neural-network account of semantic priming which

attempted to address many findings related to automatic processes thought to be involved

in this effect in both healthy subjects and schizophrenic individuals (Lerner, Bentin, &

Shriki, 2012a,b). Here, we show how an extension of this model can naturally address

several important findings typically attributed to controlled processes utilized during per-

formance in this task. Specifically, we show how basic findings regarding the type of

relation between the prime and target words (associative, category-exemplar, mediated,

backward), the stimuli list (high vs. low relatedness proportion), and the type of task

(pronunciation vs. lexical decision) can be naturally accommodated within our model

when combined with a simple reinforcement learning rule which attempts to optimize

network performance. From these simulations, we derive a new hypothesis about the

underlying differences between automatic and controlled mechanisms in general, and in

semantic processing in particular. Although our approach does not directly address the

more phenomenological aspects of automatic and controlled processes (e.g., the relation

to free will), we do attempt to draw a more distinct, qualitative line, based on computa-

tional principles, between those processes which can be intentionally modulated (i.e.,,

processes that subjects can intentionally choose to activate if encouraged by environmen-

tal or internal motivators) and those which are inherently automatic.

The article has the following structure: First, we review some of the main findings

regarding controlled processes in semantic priming. Second, we briefly describe how

these findings were modeled by two previous qualitative theories. Then, we turn to

describe our model and how it accounts for these findings as well as solves some prob-

lematic issues which have not been well treated in the past. Finally, we describe how the

model relates to previous theories of automatic and controlled priming, present several

predictions stemming from it, and mention how it could be further extended. Not all cen-

tral findings regarding controlled processes are covered; the literature in this domain is

vast and also relates to mechanisms—especially decision-making mechanisms—which are

not part of our model. However, we partially address these additional findings in the Gen-

eral Discussion and suggest how they, too, may be accommodated in future expansions

of the model using the same principles of reinforcement learning and optimization.

2. Semantic priming

2.1. Basic findings supporting involvement of controlled processes

In a typical priming experiment (Meyer & Schvaneveldt, 1971; Neely, 1977; see

Neely, 1991, for a review), subjects are presented with two words in succession, the

prime and the target. Frequently used procedures involve reading the prime silently and

either naming the target (pronunciation task), or deciding whether it is a real word or not

(lexical decision task [LDT]). The target could either be semantically (or associatively)

related or unrelated to the prime, or a nonword in case of the LDT. The semantic priming

effect refers to the finding that the average reaction time (pronouncing the second word

1564 I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014)
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or deciding it is a real word) is shorter and error rates are lower when the prime and the

target are semantically related to each other, compared to when they are unrelated. When

examined compared to a neutral stimulus (e.g., a nonverbal prime such as “XXXXX”),

this effect is revealed to be composed of facilitation (a related word is recognized faster

than a word following a neutral stimulus) and, sometimes, also inhibition (an unrelated

word is recognized more slowly than a neutral stimulus).

Semantic priming is believed to be based, first and foremost, on automatic mechanisms

that rapidly activate the semantic neighborhood of identified words. Contemporary

accounts assert that after a prime word is recognized, some of its related semantic con-

cepts are immediately activated in memory before target appearance, thus providing an

automatic “head start” to the subsequent recognition of targets which are related to the

prime compared to targets which are unrelated to it (see, for example, the spreading acti-

vation theory; Collins & Loftus, 1975). However, there are strong indications that con-

trolled strategies also play a part. For example, when the experimental prime-target pairs

are embedded in a stimuli list that contains many semantically related items, priming is

augmented compared to when related items are sparse (e.g., Neely, Keefe, & Ross,

1989). This Relatedness Proportion effect (RP; the ratio of related prime-target pairs out

of all word pairs) is often salient only when the SOA between the prime and target is

long (>500 ms; Neely, 1991; but see Bodner & Masson, 2003; and Feldman & Basnight-

Brown, 2008; for some evidence of short-SOA stimuli-list effects). Specifically, the pat-

tern of facilitation versus inhibition in priming is directly affected by RP and SOA:

Although facilitation already occurs at short SOAs and increases at long SOAs when the

RP is high, inhibition seems to be nonexistent at short SOAs and appears only at long

SOAs. Moreover, the increase in facilitation is mostly evident for pairs which are

strongly associated with each other such that the target is relatively predictable from the

prime (e.g., dog–cat). These pairs usually do not produce inhibition at all. In pairs which

are semantically related but not necessarily associated (e.g., category – exemplar pairs

such as animal – cat), facilitation does not increase with SOA, whereas inhibition appears

at long SOAs (Neely, 1991; McNamara, 2005; see Table 1 for a summary of some of

these effects). Such results convinced researchers that subjects attempt to fit their expecta-

tions to the commonalities of the task to reduce their response times and elevate their

accuracy, but they are able to do so only when they readily detect that many primes are

related to the target (i.e., a high RP) and only when there is enough time between prime

and target appearances to develop such expectations (i.e., long SOA; Becker, 1980). If

expectations are met, facilitation increases; when they are not, inhibition occurs. Two of

the most popular theories addressing these findings are the expectancy mechanism (e.g.,

Becker, 1980) and semantic matching (Neely & Keefe, 1989). These are described below.

2.2. The expectancy mechanism

The expectancy hypothesis suggests that participants create a set of expected words

based on the prime and prioritize this set while searching for the target. It is assumed that

if participants identify that in many trials the target is semantically and/or associatively

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1565
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Table 1

Classic- versus current-model accounts of controlled priming

Effect

Classic Account

(e.g., Hybrid Model) Current Model’s Account

Existence of an RP effect High RP causes subjects to

expect that primes will be

followed by related targets,

thus facilitating their

recognition compared to when

a low RP is used

High RP, in contrast to low RP,

supplies opportunity to learn

how to adjust network noise

such that semantic transitions

can be optimally modulated to

decrease RTs to related targets

Increased facilitation of targets

by high RP compared to low

RP when the stimuli list

contains many associatively

related pairs

Subjects expect the target to be

one of the few words that are

strongly associated with the

prime; if correct, the target is

recognized faster compared to

when no expectations are

elicited

The network learns to jump to

the most associated concept

and “stay there” (which is

optimal for associative pairs).

If the target is indeed this

associated concept, its

recognition is accelerated due

to the strong influence of the

semantic network on the

lexical network

Modest increase in facilitation

of targets by high RP

compared to low RP when

stimuli list contains many

category-exemplar pairs

Subjects expect the target to be

one of many possible words

related to the prime. There is

a small benefit of going over

all of them compared to when

no expectations are elicited

The network learns to avoid

transitions (which is optimal

for related but unassociated

pairs). Thus, the network

prevents the decrease in

semantic facilitation occurring

due to transitions to concepts

unrelated to the target

RP effects mainly evident at

long SOAs

Short SOAs do not allow

enough time to build

expectations

Short SOAs do not allow

enough time for semantic

transitions to occur frequently,

thus preventing the network

from efficiently learning the

benefits of certain regions in

the noise-parameter space

Mediated priming does not

occur in standard LDT; occurs

in LDT with unmixed stimuli

lists which contain only

mediated pairs

Post-lexical processes such as

semantic matching, which

occur only in LDT, cancel out

mediated priming effects

caused by spreading

activation. With unmixed lists,

semantic matching is not

attempted

Default noise in standard LDT

does not allow semantic

transitions that are necessary

for mediated priming. With

unmixed lists, the network is

sufficiently exposed to the

benefits of transitions (similar

to high RP effects) and learns

to reverse this default

tendency

(continued)

1566 I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014)
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related to the prime, they tend to develop a set of expected targets from the prime’s

immediate semantic “neighborhood.” When the target appears, this “expectancy set” is

scanned first, while the general lexicon is scanned only if the presented target is not

included in it. If the target is found in the expected set, its recognition time is consider-

ably accelerated. If it is not found there, however, its recognition is delayed by this initial

screening procedure. Hence, the application of an expectancy strategy can account for

both the facilitation and inhibition components of the priming effect (cf., the “verification

model,” Becker, 1976, 1980). Once an expectancy strategy is applied, the magnitude of

both facilitation and inhibition depends on the size of the expectancy set: Large expec-

tancy sets should reduce facilitation and augment inhibition while the inverse pattern

should emerge when the expectancy set is small. Becker (1980) demonstrated that the

size of the expectancy set depends (among other factors) on the subject’s experience-

based expectations about the prime–target relation. If the target is highly predictable (as

in the case of a word list with many strongly associated word pairs), then the expected

set will be small, containing only those words which are highly related to the prime, and,

consequently, the expectancy-based priming will be facilitation-dominant (any inhibition

stemming from the initial screening procedure would be negligible). If, however, more

than a few targets could be expected (as, for example, in the case of category-exemplar

lists which typically contain exemplar targets with varying degree of relatedness to their

corresponding category primes and none are strongly associated to the prime), a larger

expectancy set will be produced and consequently priming will be inhibition-dominant.

Eisenberg and Becker (1982) referred to these two substrategies as “prediction” and

Table 1. (continued)

Effect

Classic Account

(e.g., Hybrid Model) Current Model’s Account

Backward priming is reduced in

long compared to short SOAs

in pronunciation tasks but is

stable across SOAs in LDT

— In Pronunciation tasks, the

default noise values allow

transitions. At short SOAs,

transitions are scarce, whereas

at long SOAs they are

common. Backward priming is

eliminated by transitions;

therefore, long SOAs reduce

this effect. Default noise in

LDT prevents transitions to

begin with; therefore,

backward priming is

maintained

Note. Central findings in semantic priming involving controlled processes (see reviews in Neely, 1991;

and McNamara, 2005). The current model’s account for these effects is contrasted with classic accounts given

by the hybrid model. Note that this table provides only a partial description of the findings and their explana-

tions and disregards other effects, such as inhibition in priming. Please see text for more details. LDT, lexical

decision task; RP, relatedness proportion; RT, reaction time; SOA, stimulus onset asynchrony.

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1567
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“expectancy,” respectively. The theory further points to several conditions that need to be

fulfilled in order for expectancy to occur. First, the SOA must be sufficiently long for an

expectancy set to be formulated. With short SOAs, subjects do not seem to have enough

time to create such a set before the target appears. Second, the proportion of related trials

in the stimulus set (the RP) must be sufficiently large. If the RP is low, subjects do not

have enough opportunity to observe the occasional relatedness between prime and target

and, therefore, do not engage in expectations at all. Given the above, the expectancy the-

ory naturally explains why high RP increases priming, and it does so only at long SOAs;

why inhibition appears at long SOAs but not at short SOAs; and why this inhibition

depends on the stimuli list containing many category-exemplar pairs (which encourage

the “expectancy” strategy) rather than associatively related pairs (which encourage the

“prediction” strategy).

2.3. Semantic matching

Semantic matching refers to a hypothetical post-lexical mechanism, which is activated

only during LDT and is used primarily to facilitate the rejection of nonwords and the rec-

ognition of related target words. According to Neely and Keefe (1989; see also de Groot,

1983), when subjects are required to reach a lexical decision, they can exploit any seman-

tic relatedness between a target stimulus and its prime to accelerate the binary word/non-

word response. Priming experiments employing LDT typically contain an equal number

of word and nonword targets to prevent a bias toward one of the two required responses.

As the real target words are divided to those related and those unrelated to their primes,

there are, overall, more nonword targets than unrelated real-word targets in the stimuli

list. The ratio of nonword targets of the total nonrelated targets (called “nonword ratio”)

is thus typically above 0.5, meaning that if no relatedness between prime and target

exists, the target is most likely a nonword (and, of course, if a relation does exist, the tar-

get is obviously a real word). This information can thus allow participants to facilitate

responses to nonwords, as well as to related target words. However, when the target is an

unrelated real word, the “nonword” decision is obviously wrong and the need to reverse

the initial tendency toward it (on the basis of additional bottom-up information) delays

the response. Therefore, the facilitation of nonword responses by the semantic matching

mechanism comes at the cost of delaying responses to real unrelated words, which, in

turn, contributes to the inhibition component of priming. It was also shown that semantic

matching, like expectancy, acts mostly at long SOAs (Neely, 1991) but the reasons for

this SOA dependency are not entirely clear (McNamara, 2005).

As the presumed mechanism of semantic matching is post-lexical and hence less sensi-

tive to the order of prime and target presentation (in contrast to forward-associative

mechanisms such as expectancy), it is often considered to be responsible for the phenom-

enon of backward priming (Neely, 1991). In backward priming, the prime and target are

only related through an association whose direction is opposite to the order of their pre-

sentation (e.g., prime – baby, target – stork; as baby is an associate of stork but not vice

versa, the direction of association is from target to prime whereas the presentation order

1568 I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014)
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is opposite). Many models of priming consider both automatic mechanisms and

expectancy to be inappropriate for accounting for this effect as they require the prime to

activate the target based on either a forward association or a clear semantic relation (none

of which exists between backward-related primes and targets). Processes that are insensi-

tive to the specific direction of association, such as semantic matching, were therefore

suggested as the likely contributors to the effect. Accordingly, backward priming was

initially detected only in LDT, where semantic matching is supposedly used, and not in

pronunciation, where this mechanism is inactive.

In addition, semantic matching is thought to eliminate mediated priming (McNamara,

1992; Shelton & Martin, 1992). Mediated priming refers to the priming effect achieved

by primes and targets which are only related through a mediating word (e.g., dog – milk,
mediated by cat). As this effect can already occur at short SOAs, it is usually attributed

to automatic mechanisms. However, this effect is not robust and is typically observed

only when semantic matching is not likely to be applied (e.g., in pronunciation tasks, or

in lexical decisions when no directly related pairs are present in the stimulus list, thus

creating a noninformative 0.5 nonword ratio). The absence of mediated priming when

semantic matching is applied was explained by the assumption that the inhibitory effects

of semantic matching may “cancel out” the indirect facilitatory effects of automatic

mechanisms as indirectly related words are recognized as unrelated by the semantic

matching mechanism (Neely, 1991; see Table 1).

2.4. Caveats

Although the combination of expectancy and semantic matching (which, together with

the automatic mechanism of spreading activation, was titled “the hybrid three-process the-

ory” by Neely & Keefe, 1989) seems to satisfyingly account for most controlled priming

effects (Neely, 1991), it has nevertheless run into several difficulties and contradictions.

First, whereas both mechanisms should be responsible for facilitation and inhibition, the

role of expectancy in producing inhibition has been challenged by findings showing no

inhibition in pronunciation tasks even at long prime-target SOAs using category-exemplar

pairs with high RP (Neely, 1991). Addressing this caveat, Keefe and Neely (1990) sug-

gested that inhibition may actually stem entirely from the semantic matching mechanism,

which is activated only in LDT and is irrelevant in pronunciation where no decisions are

needed. According to this hypothesis, expectancy, at typical priming conditions, contrib-

utes only to the facilitation component of semantic priming (i.e., only Eisenberg and

Becker’s “prediction” strategy is actually used) and not to inhibition. Accordingly, it has

been suggested that semantic matching is actually responsible mostly for inhibition rather

than facilitation (Lorch, Balota, & Stamm, 1986; McNamara, 2005). In other words,

semantic mechanisms such as expectancy only induce facilitation, whereas inhibition is

entirely dependent on decision mechanisms outside the semantic system. More challeng-

ing to the hybrid model was the finding that expectancy and automatic mechanisms inter-

act whereas according to the theory they should be independent (Balota et al., 1992;

Neely et al., 2010). In addition, the contribution of semantic matching to backward

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1569
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priming and to the elimination of mediated priming was called into question. First, in

contrast to the early results, significant backward priming effects were found in pronunci-

ation tasks at short SOAs (Hutchison, 2003; Kahan, Neely, & Forsythe, 1999; see

Table 1). As semantic matching is not used in pronunciation, it cannot account for such

effects. Second, although semantic matching is supposed to act only at long SOAs, medi-

ated priming under typical LDT is already abolished at short SOAs (Balota & Lorch,

1986). In addition, some recent results have shown that semantic matching may actually

contribute to certain mediated priming effects and that the existence of mediated priming

in LDT may be more dependent on whether the strength of the associative connections

between prime to mediator and mediator to target are sufficiently high rather than on

decision-making factors (Jones, 2012).

All in all, some of the most illuminating findings in the priming literature, including

the list context effects, the influence of the prime–target relation type, and the effect of

task-type and SOA, have been roughly accounted for by the hybrid model; however, this

ad hoc combination of different automatic and controlled mechanisms has been nothing

but obvious. We turn now to describe our previous network model of priming and how it

can be extended to account for many of the above findings, replacing the perspective

taken by the hybrid model, as well as solve some of the difficulties. Moreover, we show

how the resulting network dynamics may constitute a mechanistic ground for certain

aspects of the expectancy theory. In the current article, however, we focus only on the

facilitation results; the way inhibition might arise is deferred to the General Discussion.

3. The model

3.1. Basic architecture and automatic mechanisms

The currently proposed network is based on the model presented in Lerner et al.

(2012a). Here, we present only the main attributes of that network (see more details in

the Appendix and in Lerner et al., 2012a). The model contains two computational layers,

lexical/phonological and semantic (Fig. 1). Visual input representing a word is fed into

the lexical/phonological layer where the word is recognized. The activity elicited in the

lexical layer is fed forward to the semantic layer where the word’s meaning is stored.

Importantly, these processes are interactive, so that, in addition to the feed forward trans-

mission from the lexical to the semantic layer, the semantic layer can influence the lexi-

cal layer by feedback.

The lexical and semantic layers are modeled as attractor neural networks with sparse

representations and continuous-time dynamics (see Hopfield, 1982, 1984; Tsodyks, 1990).

Each network is a fully connected recurrent network composed of 500 neurons. Memory

patterns encoded to each network are binary vectors of size 500, with “1” indicating a

maximally active neuron, and “0” an inactive one. The representations are sparse (i.e., a

small number of neurons are active in each pattern). When an external input is fed into

neurons which are part of a specific memory pattern, the activity of the entire network is
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driven by the internal connectivity to gradually converge to this pattern. The connectivity

between the neurons is set according to the Hopfield weight matrix for sparse representa-

tions (see Appendix), which assures the stability of the patterns. The neurons are analog

within the range [0,1] and reach binary values when converged to one of the memory pat-

terns. They obey a logistic transfer function of their local input, which represents the total

influence of both the lateral connections coming from the other neurons in the same layer

as well as external inputs from other layers. External inputs are always excitatory. Gauss-

ian noise with temporal correlations is added to the local input, inserting some degree of

stochasticity to the system.

In the semantic layer, memory patterns represent concepts. Relatedness between con-

cepts is implemented as correlations between memory patterns (reflecting the degree of

overlap between them). For example, in Fig. 1, the concepts dog and cat are sharing one

active neuron, making them correlated. The more two concepts are related, the stronger

their correlation is; unrelated patterns have a correlation near 0.

In addition to the typical stable-state dynamics, the semantic network is also crucially

influenced by adaptation mechanisms, which prevent neurons from maintaining a steady

firing rate and make the network unable to hold its stability infinitely. As a consequence,

with time, the network autonomously leaves the present attractor and converges to a dif-

ferent one. The process may repeat again and again, with the network “jumping” from

one attractor to another. Such jumps between attractor states, hypothetically reflecting

associative thought chains, were termed “Latching Dynamics” by Treves (2005). It was

found that there is a higher probability of network transitions between correlated patterns

rather than between uncorrelated ones, as the former require fewer changes in the overall

activity (Herrmann, Ruppin, & Usher, 1993). Critically, this process depends on the

degree of noise in the system: If the noise is very low, the destabilization caused by the

adaptation mechanism would be weak and latching dynamics would not be evident; if,

Fig. 1. Architecture of the network model. Patterns representing related concepts are correlated in the seman-

tic network but uncorrelated in the lexical network. Active units of two toy example patterns representing

“dog” and “cat” are marked. Connections between networks are from active units of a pattern in one network

to all corresponding active units in the other network. For simplicity, only some of these connections are

drawn.
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however, the noise is not too low, latching dynamics would appear as described. In our

model, we assumed the default noise is not low and allows for latching to take place

(Lerner et al., 2012a).

In the lexical layer, encoded memory patterns represent words. The dynamics are simi-

lar to those governing the semantic network, with two important differences: There are

no correlations between the word patterns in the lexical network (indicating no lexical

relations between the words, such as “bat”-“rat” and “cable”-“table,” mimicking the lack

of such relations in typical stimuli of semantic priming experiments), and there are no

adaptation mechanisms which cause latching dynamics (resulting in simple steady-state

behavior with no associative transitions). The links between the lexical and semantic net-

works are based on connections between active neurons in corresponding patterns (see

Fig. 1). An activated neuron in a certain word pattern in the lexical network sends excit-

atory connections to all active neurons in the corresponding concept pattern of the seman-

tic network and vice versa. Therefore, the activation of one word pattern in the lexical

network activates to different extents all related concept patterns in the semantic network,

and vice versa. The bottom-up input to the lexical network, which represents visually pre-

sented words, is also excitatory and activates only the neurons that are included in the

corresponding word pattern.

Lexical-to-semantic connections are strong but are also subject to synaptic depression

with slow recovery time. This allows the lexical network to have a fast, short-lived influ-

ence on the semantic network, allowing it to quickly converge to the appropriate concept

pattern and engage in latching dynamics with no further interference (until a new bottom-

up external input arrives and the lexical network converges to a new word pattern).

Semantic-to-lexical connections are weak and are not suppressed, allowing the semantic

network to have a slow and enduring effect on the lexical network. This top-down influ-

ence adds to the bottom-up external influence and allows priming effects to appear: If the

meaning of a newly processed word (target) is related to a concept already activated in

the semantic network (prime), the lexical network will recognize this word faster than if

the target is not related to the prime, because both the bottom-up and the top-down (cor-

relation-dependent) streaming contribute to the recognition process (see Stolz & Besner,

1996, for a similar conceptualization in an interactive-activation model). Lastly, the bot-

tom-up input to the lexical network is constant for as long as a word is visible to the sys-

tem and is extinguished when the visual word disappears.

As demonstrated in Lerner et al. (2012a), the model simulates the typical priming pat-

terns characterizing normal subject performance in semantic priming experiments under

conditions favoring automatic mechanisms. Specifically, we have shown how the top-

down influence of the semantic network causes directly related prime-target pairs to yield

shorter convergence times in the lexical network, taken to indicate reaction times (RTs)

of subjects, compared to unrelated or neutral pairs, at both short and medium SOAs,

hence demonstrating priming. Moreover, we have shown how the transitions in the

semantic network cause this top-down influence to constantly change, leading to modifi-

cations in the sensitivity of the lexical network to external input over time. Specifically,

the transition probability from one concept pattern to another partially reflected
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association strength between concepts, yielding SOA-dependent priming and allowing for

indirectly related pairs, which do not have correlated representations, to nevertheless

shorten RTs and yield mediated priming. Assuming backward-related pairs share corre-

lated representations (as also hypothesized by Plaut & Booth, 2000), the model was also

shown to yield backward priming which diminishes when the SOA is long, replicating

common results in pronunciation tasks (but not in LDT). Finally, the semantic transitions

were shown to correspond to the classic automatic mechanism of spreading activation

(SA).

Although successful in demonstrating many automatic priming results, the above

model did not address findings that are usually attributed to controlled mechanisms. First,

as transitions between attractors caused by latching dynamics were an inherent part of the

model, long SOAs could lead the semantic network to engage in “too many” transitions

such that it reached concepts completely unrelated to the initial prime and thus resulted

in a significantly diminished priming effect—contrary to experimental evidence. Second,

as the network mechanisms were completely insensitive to regularities in the statistics of

stimuli over trials, list context effects were not possible. Finally, the model did not differ-

entiate between pronunciation tasks and LDT and therefore disregarded their different

influence on priming.

3.2. Incorporating controlled processes: Basic assumptions

The primary conjecture we introduce in the current article is that in contrast to the

basic model presented above, latching dynamics is not a fixed characteristic of the system

but, rather, can be responsive to environmental conditions of the kind usually taken to

modulate control processes in priming. Indeed, from a strictly dynamical perspective,

even with synaptic depression mechanisms operating, latching dynamics is not obligatory.

Rather, semantic transitions depend on the amount of noise in the semantic network, with

high noise accelerating transitions and low noise delaying or even preventing them. Other

parameters can have similar effects.1 As noted above, reduction in the noise to suffi-

ciently low values causes the immediate cessation of transitions and, consequently, forces

the network to maintain its convergence on a certain memory state. Elevating the noise,

on the other hand, accelerates transitions (see Fig. 2A for a demonstration of these

effects). As the effective strength of the feedback from the semantic to the lexical net-

work depends on which concept the semantic network rests on, the level of noise can

have a substantial influence on the priming effect. This influence, as we will show, clo-

sely matches many of the controlled priming effects in the literature. We, therefore, pro-

pose that the level of noise in the semantic network can be modulated before and during

a trial, reflecting what could be seen as the underlying neuronal mechanisms governing

“focusing” and “defocusing” of attention on specific concepts and their neighborhoods,

with attention acting as a signal-to-noise regulation mechanism. Focusing attention, in

this scheme, is reflected by lowering the noise, while defocusing attention is reflected by

elevating the noise. This control represents subjects’ attempt to increase the efficiency of

information processing in the network. Indeed, the notion that attention is involved in
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increasing signal-to-noise ratios in neurons which are active in the processing of stimuli

has been suggested in the past based on an aggregate of electrophysiological and imaging

studies in humans (Coull, 1998) and its feasibility has been shown in both in vivo

recordings (Haider, Hausser, & Carandini, 2013) and computational modeling (e.g.,

(A)

(B)

Fig. 2. (A) Correlation of the semantic network state with its stored memory patterns as a function of time,

demonstrating the differences in typical transition times under various noise levels. Each pattern is indicated

by a line with a different color (not all correlation lines are visible at all times, as often they coincide). The

network was presented with an external stimulus representing pattern 1 for 100 ms and then allowed to run

freely, jumping from one pattern to another. Moment of convergence to a specific pattern is indicated by the

corresponding pattern number above the appropriate line (low noise: gamp = 0.01; default noise: gamp = 0.05;

high noise: gamp = 0.08). (B) Results of a simplified simulation demonstrating RT minimization performed

by the learning rule. In this simplified simulation, RT is hypothesized to be a parabolic function of the noise

with a minimum at 40 ms reached at a noise value of 0.02 (shown in the inset). In the simulation, the noise

is initialized to the value 0.05 and is then allowed to change incrementally using the learning rule, with RTs

corresponding to the noise value at each trial drawn from the parabolic function. Learning drives the noise to

converge to its minimum value (upper panel), thus bringing the system to constantly produce the minimum

RT (lower panel).
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Servan-Schreiber, Printz, & Cohen, 1990). The level of subjects’ awareness of these noise

modulations, however, could be partial and indeed might be translated to only a general

feeling of “attendance” to certain presented or expected stimuli (see also McNamara,

2005; about the unnecessity of full conscious involvement in expectancy, as well as Rose,

Haider, Weiller, & Buchel, 2002, for an example of discrepancies between neuronal and

conscious measures of learning, with the latter lagging behind the former).

An additional working hypothesis we make is that subjects can identify the moment at

which convergence to a semantic concept occurs and adjust their control parameters

accordingly (this identification can be implemented in various ways but to remain focused

on the current objective, we will not specify its exact mechanistic realization). In practice,

this hypothesis is manifested by allowing the noise level to change during a trial after a

transition has occurred.

3.3. Learning in the network

3.3.1 General framework
During semantic priming experiments, strategies are employed to improve task perfor-

mance. In most semantic priming experiments, subjects are instructed to respond as

quickly and as accurately as possible; therefore, improvement in performance is reflected

by quicker and less erroneous responses. This implies that after each trial, subjects are

able to monitor the outcome of their response (both the time it took and whether the

reply was correct) and make corresponding adjustments in their information processing so

that they would benefit from experience in subsequent trials—a classic reinforcement

framework. RTs have an advantage in this scenario: As errors are binary (either a correct

response was given, or not) and occur only sporadically, they provide an impoverished

feedback compared to RT information. Therefore, in the following simulations, we con-

sidered RT minimization to be the main goal of subjects’ strategies.

From a general perspective, if noise can be regulated during a trial, finding an optimal

solution which minimizes RTs requires solving a highly complicated optimization prob-

lem with many degrees of freedom. This is neither practical nor reasonable. Therefore,

for simplicity, we assume that only two control parameters are adjusted during the experi-

mental session: the amount of noise in the system at the beginning of each trial (which is

maintained until the first transition occurs; termed here, “initial noise”) and the amount of

noise from the first transition until the end of the trial (termed “late noise”).2 These set-

tings, although restricted, could still allow a variety of strategies to be employed. For

example, subjects could lower the initial noise in the system and avoid transitions (which,

in cognitive terms, corresponds to focusing attention on the prime; in terms of the classic

controlled processes, this could be thought of as actively avoiding engagement in any

kind of expectancies regarding the upcoming target word); they could lower the noise

after one transition and thus maintain the activation of the new concept which the system

has jumped to (focusing attention on an associate of the prime, which, in expectancy

terms, reflects making a prediction that this pattern would be the target); they could

increase the noise values and accelerate transitions (actively avoid attending any specific
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concept by “rushing” through associations); or they could withhold any significant

manipulations of the noise and allow transitions to flow undisturbed, as in the default

case (allowing natural “stream of consciousness”). Whether these or any other strategies

are actually applied depends on the learning mechanism and the specific characteristics of

the task.

3.3.2 Learning rule
As discussed above, discovering which noise adjustments are required to minimize

RTs to targets during a priming task may be seen as a reinforcement learning problem.

Subjects are assumed to employ, after each trial, a reinforcement learning rule that modu-

lates the noise parameters based on the data available to them. While many reinforcement

learning methods may accomplish this objective, we have chosen to use a very simple

rule to prevent results from being highly sensitive to the details and efficiency of the

learning process.

The local input of each neuron in our network includes a noise term drawn from a

Gaussian distribution with 0 mean, and standard deviation termed “noise amplitude” (see

Lerner et al., 2012a). Learning in the following simulations was based on a reinforcement

rule that adjusts this noise amplitude in the semantic network (separately for the initial

and late noise) to minimize the average reaction times of the system. The noise amplitude

of the lexical network remained constant as in the original model.

The learning process assumed the following pattern: Each trial began with the noise

amplitude (independently for the initial and late noise) set to a certain value, gamp (n) (n
being the trial number). The system then “decided” to try a somewhat different noise

value, gamp (n)+e(n), with e(n) being an exploration parameter drawn from a Gaussian

distribution with zero mean and variance that decays with trials: e(n)~N(0, Ae�bn). This

exploration term allows the system to examine the effect of variable noise amplitudes

around the current one, with a large average magnitude of exploration in the beginning of

the experimental session and becoming insignificant as trials advance (see Appendix for

specific values of the parameters). The network dynamics was then set in motion, and

yielded a reaction time for that trial, RT(n). This RT was compared to the average RT of

the previous trials (it is assumed that this average RT value is accessible to the system,

representing an intrinsic evaluation of accumulated past performance) and induced a

change in the current noise value according to the following learning rule:

gampðnþ 1Þ ¼ gampðnÞ þ a RTn�1 � RTðnÞ� �
eðnÞ

Here, gamp (n + 1), is the new noise amplitude, RTn�1 the average reaction time of the

previous trials (trials 1 to n�1), and a the learning rate. In a nutshell, this learning rule

implies that if the recent RT was better (i.e., shorter) than the average RT, the system

tends to change the noise value in the direction of the exploration parameter e(n) (note

that this parameter can be both positive or negative); if it was worse (longer), it tends to

change the noise value in the opposite direction. The rationale for comparing the latest

RT to the (average of) previous RTs is that this difference constitutes a simple metric for

1576 I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014)

 15516709, 2014, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12133 by U

niversity O
f T

exas A
t San A

nt, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



estimating local network performance: When the current trial improves results (i.e., yields

shorter RT than the average RT of previous trials), it indicates that the random noise

change in the beginning of the trial was probably beneficial and should be maintained. If,

however, the current trial yielded degraded performance, the random change should be

avoided. As a result, this learning mechanism pushes the network toward a greedy search

of the noise parameter space. After the learning rule was applied, the next trial started

with the new noise amplitude, gamp (n + 1), and the process repeated. As trials pro-

gressed, the tendency to “explore” different noise values decreased and the system settled

to the state it reached without further learning. It is also worth noting that these trial-by-

trial modulations are not assumed to require fully conscious involvement (see Lerner

et al., 2012a; for discussion) and, therefore, should not necessarily be accompanied by a

subjective feeling of “strategy change” (see also McNamara, 2005, for an argument

against the necessity of conscious processes in expectancy mechanisms).

Fig. 2B displays this learning process in simplified settings that were artificially cre-

ated, for the sake of demonstration, without using the neural network. In these simplified

settings, we made the ad hoc assumption that reaction time is a parabolic function of the

noise with a minimum at gamp = 0.02 (RT(0.02) = 40 ms). Setting the default noise to

0.05 and applying the learning mechanism, with RT values of each trial derived directly

from the parabolic function, we see that the noise settles down to approximately 0.02,

thus bringing the system to constantly produce the minimum RT (and, consequently, the

average RT) value of 40 ms. As evident in the figure, learning is not monotonic and

noise values jitter up and down due to the exploratory behavior; however, the general ten-

dency is to move toward the “correct” value and eventually settle on it.

3.4. Encoded patterns

The encoded patterns in the semantic network were chosen such that various types

of relations between concepts (e.g., directly related; indirectly related; backward related;

strongly associated; weakly associated) could be reflected.3 The general structure resem-

bled simulations in Lerner et al. (2012a), containing four semantic neighborhoods with

four patterns each (patterns 1–4, 5–6, 9–12, and 13–16). Correlation strengths could be

weak, medium, or strong. In the first neighborhood, all correlations had medium

strengths with the exception of one pair having a strong correlation (patterns 1 and 2).

In the second neighborhood, patterns 5–6 had a strong correlation, patterns 5–7 and

5–8 a medium correlation, and patterns 6–7 and 7–8 a weak correlation (patterns 6 and

8 were not correlated). In the third neighborhood, all correlations were weak and equal

across all pattern pairs, and in the fourth neighborhood all correlations were equal and

strong. Finally, there were two correlations between patterns belonging to different

neighborhoods: Pattern 2 was strongly correlated with pattern 5, and pattern 9 was

strongly correlated with pattern 13 (see Fig. 3A and B). The resulting structure created

the following types of relations between pairs of patterns: strongly directly related (e.g.,

patterns 1–2 or 2–5); medium directly related (e.g., 5–7); weakly directly related (e.g.,

10–11); and indirectly related (e.g., 1–5, mediated by pattern 2, or 2–6, mediated by
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5). In addition, as shown in Fig. 3C (which was calculated by examining which transi-

tions occur in the network starting from a specific pattern, averaged over 100 repeti-

tions; see Lerner et al., 2012a, for details), this structure led to different transition

probabilities between certain pairs: Patterns 1–2, for example, have a strong mutual

transition probability and are therefore strongly associated in both directions; patterns

9–13, in contrast, are associated only in the forward direction (9?13), with the back-

ward direction (13?9) having a transition probability close to 0. Therefore, patterns

(A)

(C)

(B)

Fig. 3. (A) Structure of the semantic memory used in the simulations. Specific words are attached to the con-

cept numbers for easier conceptualization. (B) A simplified illustration of the relatedness between concepts as

represented by vector-correlations in the network, for several representative concepts (brown/light blue colors

representing values of 1/0). For purposes of illustration only 20 components are shown instead of 500.

(C) First-transition probabilities between the concepts appearing in A (No transitions existed between upper

and lower neighborhoods; therefore, they are not shown). Probabilities are indicated by colors ranging from 0

(dark blue) to 1 (red). Columns represent the presented words and rows represent their associations.
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13–9 form a backward-related pair. Patterns 5–7 and 5–8 belong to the same

neighborhood but have weak forward associations; therefore they represent, for our

current concern, typical “category—exemplar” relations.

Sixteen “word” patterns were encoded in the lexical network, corresponding to the 16

“concept” patterns in the semantic network. These patterns were all uncorrelated. In addi-

tion, a seventeenth pattern was encoded in each network, uncorrelated to the rest. This

pattern served as the initial state of each network at the beginning of the simulations (see

Lerner et al., 2012a).

4. Simulation 1: Effect of stimuli list

4.1. Simulation 1a: Learning with strongly associated items

In this simulation we examined whether noise adjustments could be the mechanism

accounting for RP effects on priming when strongly associated pairs are used. These

effects have been attributed to controlled processes in human experiments, and specifi-

cally to the “prediction” strategy of expectancy (Becker, 1980).

4.1.1. Methods
Each trial consisted of the presentation of two inputs, a prime followed by a target,

each being one of the pre-encoded lexical patterns. Related trials could consist of any

of the strongly correlated pairs with strong transition probability from prime to target

(e.g., 1–2; 5–6; 9–13). Unrelated trials included any prime from the first or second

neighborhood and a target from the third or fourth neighborhood, or vice versa.

Prime-target pairs were randomly chosen from within the possible combinations for

each condition.

The procedure followed Lerner et al. (2012a): Each trial started with the presentation

of an external input to the lexical network, which served as “prime.” After 100 ms (150

numerical time steps; see Appendix), this external input was removed, and a new external

input corresponding to the target was presented to the lexical network with either a short

200 ms or a long 1000 ms SOA (cf. Neely, 1991). The reaction time to a target was mea-

sured from its onset and until the convergence of the lexical network (“correct” conver-

gence to the target attractor was always achieved). Convergence was defined as the

network’s state reaching a 0.95 correlation with the relevant memory pattern. In addition,

the noise-amplitude values of the semantic network at the beginning of each trial (initial

noise) and after the first transition in each trial (late noise) were changed according to the

learning rule.4 The simulation was run with an RP of either 0.25 or 0.75 (cf. Neely,

1991), yielding, together with the two SOAs, four independent conditions. Five hundred

trials were run in each condition, with related and unrelated trials at the appropriate pro-

portions randomly scattered across the session. This whole design was repeated 10 times

to assure that learned trajectories in each condition are representative and results are

robust.
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4.1.2. Results
Fig. 4 displays the two noise-amplitude values along trials for each SOA and RP

(mean values for each trial over the 10 repetitions are represented by the blue and green

lines; the matched-color areas represent one standard deviation above and below the

mean). At low RPs, these values changed only slightly compared to their starting values

at the beginning of the learning process. At long SOAs with high RP, however, the sys-

tem converged to a state with low amplitude value of the late noise, indicating a learned

strategy of allowing a single transition in the semantic network after which the activity is

maintained without further transitions. At short SOAs with high RP, there was a tendency

to converge to a state with somewhat higher initial noise, indicating a strategy to acceler-

ate the first transition (although this result was not as consistent as the one achieved at

the long SOA, indicated by the larger standard deviations). Fig. 6A displays a running

average of RTs over related trials (using a 50-bins window size) for one representative

run of the simulation in each of the four conditions (here, and in the rest of the article,

we do not uniquely address reaction time results for unrelated trials as they have not been

Fig. 4. Initial and late noise as a function of trial number for the various SOA and RP conditions in Simula-

tion 1a. Lines represent average over 10 repetitions. Matched-color bands represent �1 standard deviations

above and below the average.
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significantly modulated by any of our manipulations; indeed, our network produces

mainly facilitatory effects, not inhibitory. See Lerner et al., 2012a, as well as the General

Discussion, for discussion of this issue). Only the long SOA, high-RP condition yielded a

significant modulation of RT, with the values decreasing (i.e., the facilitation magnitude

increasing) as learning progresses. Fig. 6B displays, for the same representative runs of

the simulation as in 6A, a running average over trials (again, using a 50-bins window

size) of the average number of transitions in a trial for each RP condition at short and

long SOAs. At short SOAs, transitions were rare and were not modulated throughout the

session, regardless of RP. At long SOAs, the number of transitions tended to decrease

toward 1 at the high-RP condition, confirming the reduction in late noise, whereas with

low RP, the number of transitions increased a bit. Finally, mirroring the RT results, the

priming effect (computed as the average RT of unrelated trials minus RT of related trials

over the entire session) was modulated by RP only at the long SOA. At the short SOA,

priming was 33 and 35 ms for the low and high RP, respectively. At the long SOA, in

contrast, priming was 33 ms at the low RP and 46 ms at the high RP (see Fig. 7 for com-

parison between short- and long-SOA results at high RP and representative experimental

findings in humans).

4.2. Simulation 1b: Learning with category-exemplar items

The current simulation, as the former one, examined how noise regulation affects prim-

ing under different RP and SOA conditions, but this time using weakly associated pairs.

Experimentally, such pairs usually produce an equivalent amount of facilitation at short

and long SOAs when the RP is high. In addition, when the RP is low, facilitation is often

reduced at long SOA compared to high RP (Neely, 1991).

4.2.1. Methods
Primes and targets of related trials in the current simulation mostly belonged to the

second neighborhood and could either be 5–8, 5–7, or 5–2 (see transition probabilities in

Fig. 3C). The existence of a correlation between these pairs which is not accompanied by

a high transition probability is analogous to category–exemplars relationship, commonly

used in human experiments, which are typically only weakly associated in the forward

direction (i.e., from category to exemplar; see McNamara, 2005). The procedure was sim-

ilar to that used in Simulation 1a.

4.2.2. Results
Fig. 5 displays the mean noise values and standard deviations for the four SOA/RP

conditions. As can be seen, replicating Simulation 1a, at both RP conditions at short

SOAs and for low RP at the long SOA, there were no robust noise modulations during

the session. However, with long SOA and high RP, the initial noise was significantly

decreased across trials, indicating the selection of a strategy that minimizes transitions

and maintains focused semantic activation on the prime. Fig. 6C and D display a

running average of the RTs of related trials and of the number of transitions for one
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representative run of the simulation in each of the four conditions. There was a small but

significant decrease in RT at the long SOA when the RP was high, and no modulation of

RT in the other conditions. Similarly, the number of transitions was modulated only with

long SOA and high RP; in this condition, there was a significant decrease toward 0 in the

number of transitions along the experiment. The priming effect was modulated by RP in

the long SOA condition (14 ms compared to 23 ms for the low vs. high RP, respectively)

but not in the short SOA condition (24 ms vs. 22 ms for low and high RPs). Fig. 7 com-

pares some of these results to representative human findings under the same conditions,

showing similar trends.

4.3. Discussion of Simulation 1

The results of Simulations 1a and 1b showed how control over the probability of

semantic transitions, targeted at minimizing RTs, can yield significant modulation of the

priming effect that corresponds to experimental results in humans under the same

Fig. 5. Initial and late noise as a function of trial number for the various SOA and RP conditions in Simula-

tion 1b. Lines represent average over 10 repetitions. Matched-color bands represent �1 standard deviations

above and below the average.
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conditions. When the items list contained pairs with a high prime-to-target transition

probability (as in Simulation 1a), the system learned to allow one transition and reduce

the probability of additional transitions. Using this strategy maximized the benefits from

“predicting” the correct target. When, in contrast, weakly associated pairs such as cate-

gory-exemplars were used (as in Simulation 1b), transitions were not beneficial and could

have even been disadvantageous; therefore, the system learned to avoid transitions alto-

gether. Successful optimization in both simulations, however, was not robust and required

a sufficient frequency of relevant pairs from which the system could learn. Unrelated

pairs cannot be optimized one way or the other and therefore do not help in finding the

optimal strategy. Only related trials allow optimization and so RP became an essential

(A)

(B)

(C)

(D)

Fig. 6. (A) Reaction times of one representative run of the simulation in each condition for the strongly asso-

ciated related targets in Simulation 1a as a function of trial number. Reaction times are computed using a

moving average over a 50-trials window; consequently, simulations with high RP (containing many related

pairs) have more data points compared to simulations with a low RP. (B) Number of transitions in a trial in

Simulation 1a as a function of trial number (computed for the same representative trials in A, using the same

moving average). (C) The same as A, for the category-exemplar pairs in Simulation 1b. (D) The same as B,

for Simulation 1b.
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modulator of learning. Likewise, short SOAs are often not lengthy enough to allow the

system to commit any transition whether the noise is high or not; therefore, the system

cannot efficiently scan through the state space at short SOAs and is thus struggling to find

a better solution than the one presented by the default noise values. Only sufficiently long

SOAs, which permit transitions, allow consistent optimization to take place. This depen-

dency of optimization on high RP and long SOA in the model mirrors the common find-

ings in the literature, which indicate these very same conditions are required for

controlled processes to operate (Neely, 1991). Despite some numerical differences, the

simulation results clearly match the patterns of priming found in human studies (Fig. 7).

In addition, when only high RP is considered, RT optimization has a somewhat different

role comparing associative and category-exemplar pairs: Although priming for associated

pairs actually increased from short to long SOA, the priming effect for category-exemplar

pairs was merely prevented from decreasing at long SOAs (see the corresponding RTs in

Fig. 6). Thus, even when optimization takes place, long SOAs may increase facilitation

for associated pairs compared to short SOAs but do not affect facilitation of category-

exemplar pairs, consistent with experimental data (cf. Neely, 1991).

Although short SOAs did not generally yield RT modulation, there was some indica-

tion that an optimization process does occur under short SOA when a high RP and asso-

ciative pairs were used. This was evident by the fact that the system increased the initial

noise value under these conditions. This result is not surprising: Since transitions are ben-

eficial when associative pairs are used, and since short SOAs barely allow transitions with

the default noise value, increasing this noise can compensate for the lack of sufficiently

long SOA. However, this modulation did not result in a substantial RT minimization

Fig. 7. Main priming effects of Simulation 1 alongside corresponding findings from human studies. Human

results are taken from Neely, 1991, table 6 (facilitation effects) and table 8 (low RP, high-dominance exemp-

lars in pronunciation). Error bars represent �1 standard error of the mean.
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because even with a somewhat higher noise value, transitions were still not common

enough. Therefore, whereas our model does not completely rule out controlled priming

effects at short SOAs, it indicates that these may often prove to be inefficient. This state

of affairs may be seen as analogous to a case where subjects notice that a target word is

often related to the prime, attempt to predict the target on each trial based on the prime,

but face difficulty in actually doing so due to the short lag between the two stimuli.

It is important to note that the learning rule which we chose to use is neither optimal

nor necessary. While being quite straightforward and simple, it requires subjects to esti-

mate the average RTs of previous trials and necessitates small incremental adjustments of

the noise parameters. Other reinforcement learning rules may lead to faster and more effi-

cient learning, possibly requiring fewer trials to take effect and, as a result, perhaps yield-

ing larger differences between conditions. However, it is clear that low RP and short

SOAs would still be inferior to high RP and long SOAs in producing RT optimization as

they allow only little opportunity to learn. In addition, it may be argued that despite our

10 repetitions of each condition in the simulation, the fact that the system learns a certain

solution does not mean that it is optimal, and, indeed, the solution which was found could

be merely a local minimum of the problem domain. Particularly, it is possible that differ-

ent starting values of the noise at the beginning of the learning process (as is actually

hypothesized in the next simulation) might have led to different, possibly better solutions.

To examine this possibility, we took advantage of the fact that the parameter space is just

two-dimensional, allowing for direct scanning of various initial and late noise values

without a learning process. Fig. 8 shows the average RTs across 100 trials for a range of

initial and late noise values using the same network and stimuli as in Simulations 1a and

1b, but without applying the learning rule. As can be seen, minimum RTs are achieved

for initial and late noise values which are approximately the same as the ones discovered

by the learning network, indicating that the results indeed represent a global minimum.

Hence, the network did not merely learn an incidental local solution stemming from our

choice of using a 0.05 default noise at the start of the simulations, but, rather, learned—
when the RP and SOA allowed it—the best configuration of noise parameters which min-

imizes RTs in the relevant condition, as we speculated to be the role of controlled pro-

cesses in priming.

5. Simulation 2: Mediated and backward priming in LDT and pronunciation

Priming effects in LDT are usually stronger than in pronunciation tasks (Neely, 1991;

but see Hutchison, Balota, Cortese, & Watson, 2008). The main reasons for this differ-

ence are usually considered to stem from outside the semantic system: First, LDT

employs decision-making mechanisms that may contribute to the priming effect whereas

pronunciation does not; second, pronunciation, in contrast to LDT, may involve direct

orthographic-to-phoneme conversion which bypasses the lexicon, therefore reducing the

effect of the semantic level on information processing and diminishing the semantic

priming effect accordingly. However, several important types of priming effects which
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distinguish LDT and pronunciation cannot be accounted for by these explanations: One is

the absence of mediated priming in LDT under typical procedures, although it is signifi-

cant in pronunciation when similar procedures are used (Balota & Lorch, 1986). Mediated

priming does appear in LDT, however, if no directly related pairs are included in the

Fig. 8. Mean RTs (over both related and unrelated trials) for various RP, relatedness, and SOA conditions

over a range of initial- and late-noise values. Optimal values are clearly observed in the high RP, long SOA

condition: Lists containing associatively related items achieve minimum at a medium initial-noise value com-

bined with a low late-noise value, whereas lists with category-exemplar items achieve minimum at a low ini-

tial-noise value without a strong preference for any late-noise values (minimum RTs are marked by red

arrows). When the RP is low or when the SOA is short, RTs are much less modulated by the noise, with only

a slight advantage to high initial-noise values for associatively related items at the short SOA, high RP condi-

tion (bottom left figure).
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stimuli list (Hutchison, 2003). Another difference is that backward priming appears in

both tasks at short prime-target SOAs, but at long SOAs it appears only in LDT (Hutchi-

son, 2003). As reviewed earlier, previous explanations which have been provided for

these findings are not satisfactory. The current model, in contrast, can account for these

patterns assuming that in LDT, unlike pronunciation, the default value of the noise at the

beginning of the experimental session (before learning initiates) is low. In other words,

we assume that in pronunciation subjects begin the experimental session with unfocused

semantic activation which allows semantic transitions, whereas in LDT they begin the

session with focused activation and no transitions. In what follows, we first present a sim-

ulation which demonstrates how such an assumption yields priming effects which fit well

with the experimental results using mediated and backward-related pairs. We then discuss

in detail possible sources supporting this assumption.

5.1. Methods

We examined the influence of the default noise on mediated priming starting the prim-

ing simulation with two different noise values. In the pronunciation-analog condition, the

default noise values were set to 0.05, as in the earlier simulations. In the LDT-analog

condition, the default noise was set to 0.01, a value which does not encourage semantic

transitions (see Fig. 2). Similar to previous human experimental procedures (cf. Balota &

Lorch, 1986), the SOA was either 250 or 500 ms and the RP was low (0.33). Items con-

sisted of three pair types (“mixed” list condition): Directly related pairs that were not

strongly associated (e.g., 5–8; 5–2), mediated pairs (e.g., 9–14; 1–5), and unrelated pairs.

All pair types were randomly distributed across the session. In addition, to explore

whether omitting directly related pairs influences mediated priming in LDT, we ran

another simulation in the LDT-analog condition using a list of items which contained

only the mediated and unrelated pairs (a mediated-only, “unmixed” list condition). All

other conditions in this latter simulation were similar to the mixed list.

Another set of simulations was run to examine the influence of the default noise on

backward priming. The SOAs in those simulations were 150 and 500 ms, with a high

RP of 0.8 (cf. Kahan et al., 1999). The stimuli list was mixed, consisting of 20% back-

ward-related pairs (which were always 13–9, the only real backward pair in the net-

work; see Fig. 3C), 60% were related pairs (chosen from the same pairs as in the

mediated-priming simulations), and 20% unrelated pairs. In addition, although not tested

in human experiments in the past, we explored the possibility that inclusion of direct

pairs might be the source for absence of backward priming at long SOAs in pronuncia-

tion tasks (as they hamper mediated priming in LDT; see Discussion). To test this

assumption, another simulation was run in the pronunciation-analog condition using a

stimuli list consisting of 80% backward-pairs and 20% unrelated pairs (a backward-

only, unmixed list).

The procedure was identical to the previous simulations, with the learning rule active

throughout all sessions. Only results of a single run in each condition are presented as

there were almost no differences between learning trajectories over multiple runs.
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5.2. Results

Fig. 9 displays the initial and late noise values for the mediated and backward priming

simulations. Noise values were not modulated significantly in any of the mixed lists and

remained in the vicinity of the starting values (0.01 in the LDT-like condition, 0.05 in

the pronunciation-like condition). The initial noise was modulated, however, in the

unmixed lists: The mediated-only list caused the initial noise in LDT to rise up, allowing

semantic transitions to occur. The backward-only list, in contrast, had an effect only at

the long SOA, where it showed the opposite pattern: The initial noise in pronunciation

Fig. 9. Initial and late noise as a function of trial number, SOA, and task for the mediated and backward

priming conditions in Simulation 2.
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decreased to LDT-like values, indicating a strategy to cease transitions and focus

semantic activation on the prime.

Priming effects in each condition are presented in Fig. 10 alongside their respective

patterns in corresponding human experiments5 (human results are presented by dashed

lines or by single star marks). In the mixed list, mediated priming was significant in the

pronunciation-like condition and also increased slightly from short to long SOA. In the

LDT-like condition, in contrast, mediated priming was near zero at both SOAs. These

effects closely resembled the human experiment results. When the mediated-only list was

used, mediated priming effects in the LDT-like condition were similar to those achieved

using the mixed list in the pronunciation-like condition. The backward priming effects

using the mixed list were robust and roughly equal at the short and long SOAs in the

LDT-like condition; in the pronunciation-like condition, in contrast, there was a signifi-

cant decrease from short to long SOAs. These patterns, once again, resembled the corre-

sponding human experiments, although the strength of the backward priming effect at

short SOA using pronunciation was higher in the simulation. When the backward-only list

was used, the backward priming effects in pronunciation resembled their corresponding

effects using LDT in the mixed list.

5.3. Discussion

The results of Simulation 2 show that task-related differences in mediated and back-

ward priming can be generated by the model under the assumption that subjects approach

LDT and pronunciation differently: LDT with focused semantic activation which prevents

transitions and pronunciation with unfocused semantic activation which allows transitions.

Fig. 10. Priming effects for the various conditions in Simulation 2 (solid lines), alongside corresponding

results from human studies (dashed lines, and star marks). Human results are taken from Balota and Lorch

(1986), Kahan et al. (1999), and de Groot (1983). Error bars represent �1 standard error of the mean.
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These two initial tendencies may then be altered during the session if encouraged by the

stimuli list. However, whereas mixed lists may not be consistent enough to induce any

strategy, unmixed lists, in which all related items can benefit from the same manipulation,

do encourage them. For example, mediated-only lists contain (indirectly) related primes

which can be exploited to reduce RTs only in the condition a semantic transition has

occurred; therefore, the system, when starting from a low noise value (as in LDT), learns

a strategy in which the initial noise is raised to induce transitions. This effect, in contrast

to simulation 1, was already evident at short SOAs, suggesting that although short SOAs

provide rare opportunities to learn (only occasional transitions can occur when the SOA

is short), when the stimuli list is consistent enough the system can take advantage of

these rare opportunities (note, however, that the short SOA in this simulation was longer

than the short SOA in simulation 1, 250 ms vs. 200 ms, respectively, which, by itself,

provides some more opportunity for transitions to occur). Backward-only lists, in contrast,

contain primes which lose their facilitatory effect if transitions occur. Consequently, the

system learns, starting from a high noise value (as in pronunciation), to minimize transi-

tions by lowering the noise and hence maintain focused activation on the prime.

The priming results closely matched corresponding experimental findings in the litera-

ture. One difference between the simulation and the human results which did occur,

though, was that the simulation produced a higher backward priming effect in pronuncia-

tion at short SOAs compared to the corresponding result in humans. However, the actual

size of the priming effect in humans is influenced by several processes that are not cov-

ered by the current model; specifically, the model does not address the possible use of

direct orthographic-to-phoneme conversion which bypasses the lexicon and, consequently,

reduces the priming effects in pronunciation. As a result, the exact magnitude of the

priming effect resulting from the simulations is less important in the current context than

the various patterns of priming which the model yielded under different experimental

manipulations (SOA, the nature of the stimuli list, the task, etc.). As was shown, these

patterns clearly matched the human data. In the unmixed lists, the mediated-only condi-

tion also yielded the experimentally established effect of mediated priming in LDT when

no directly related pairs are included in the stimuli list (e.g., Hutchison, 2003). Back-

ward-only lists, however, were not examined in the past. Therefore, the results of the

simulation in the pronunciation-like condition using backward-only list set up a novel

prediction that can be tested in future experiments.

The results of Simulation 2 were based on the assumption that LDT and pronunciation

differ in the default focus of activation with which subjects approach the task. However,

why should such a difference exist? There may be several reasons. First, the pronuncia-

tion task is considered to engage more “automatic” processes compared to LDT as the

subjects’ task—naming written words—is more natural and mirrors everyday reading

behavior. LDT, in contrast, requires an uncommon response (deciding whether a word is

real or not) which might encourage subjects to take a cautious approach at the beginning

of the session and avoid defocusing semantic activation off the prime. Another possibil-

ity, however, may be related to post-lexical decision-making processes operating in LDT

but not in pronunciation. There is considerable evidence that after target appearance, sub-
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jects tend to examine whether it has any semantic relations to the prime to accelerate

their decision regarding its lexical validity (cf., the semantic matching strategy; Neely &

Keefe, 1989). In particular, subjects interpret a lack of such relations as indicating that

the target is most likely a nonword. In that case, unfocused semantic activation may com-

promise this effort if the semantic network jumps from a related prime (which eases the

decision process) to a less related or unrelated concept (which hampers it). Consequently,

from the point of view of RT optimization, it may be more beneficial for subjects to sup-

press semantic transitions when post-lexical strategies are involved. Indeed, mediated

priming—which necessitates semantic transitions—does appear in several variations of

LDT in which prime-target comparisons are discouraged (e.g., the continuous-LDT; the

go/no go task. See Neely, 1991). Future developments of the model may allow an accu-

rate expression of this hypothesis by incorporating a full decision-making mechanism that

would use learning rules that take under consideration post-lexical strategies.

6. General discussion

Priming effects at long SOAs often appear to involve controlled strategies employed

by subjects to optimize their performance in the task. These strategies have been posited

to explain observed priming effects that are not easily accounted for by automatic mecha-

nisms. In two simulations, we have shown that some of the key phenomena attributed to

such strategies can be interpreted in our network model as the modulation of semantic

transitions aimed to minimize RTs using simple reinforcement learning. The principles

which govern this learning are identical in spirit to those suggested by previous theories,

and thus result in a similar sensitivity of priming to RP, SOA, and type of prime–target
relationship (see Table 1). However, the current implementation gives an exact and quan-

titative formulation to these principles and connects them to a mechanistic neuronal net-

work model of semantic memory in which the controlled strategies get an accurate

interpretation. In addition, the way automatic and controlled processes combine is clearly

stated in the current work, suggesting that both operate on a common representation

scheme within an attractor neural network whose default dynamics can be influenced by

subject-controlled signal-to-noise modulations.

The interaction between automatic and controlled processes in our model may have non-

trivial consequences. Essentially, it suggests that controlled processes are greatly influenced

by the automatic dynamics of the network. More particularly, it implies that controlled strat-

egies cannot compensate entirely if these dynamics are to become dysfunctional. For exam-

ple, we have previously shown that the behavior of schizophrenic patients in semantic

priming experiments can be explained by an increased rate of transitions in the network,

caused by a deficient synaptic depression mechanism (Lerner et al., 2012b). This increased

rate, while stemming from the automatic components of the network, also results in a

reduced ability of the system to efficiently exert fine control of the dynamics through noise

modulations, which in turn may manifest as a deficit in the subject’s attention and ability to

use contextual information for applying strategies (Braver, Barch, & Cohen, 1999; Lerner

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1591
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et al., 2012b). Consequently, what seems to appear as a deficiency in control might actually

hide an underlying deficit in automatic mechanisms. In this sense, our model does not sup-

port distinguishing between automatic and controlled processes purely on the basis of task

performance under given conditions (see also Logan, 1988). A more fundamental distinc-

tion, based on computational principles, is offered at the end of the current discussion.

It is tempting to interpret the suggested control over transitions as partially reflecting

the expectancy mechanism, or at least the “prediction” strategy suggested by Becker

(1980). First, similar to the current model, the expectancy mechanism was originally for-

mulated as operating on the same representations elicited by automatic mechanisms,

increasing the activation of expected concepts by means of selective attention and inhibit-

ing unattended concepts (Posner & Snyder, 1975). Second, the “prediction” strategy sug-

gested by Becker (1980) as part of the expectancy mechanism claims that facilitation,

unlike inhibition, is caused mainly by the activation of a single or very few predicted

concepts based on the characteristics of the stimuli pairs in previous trials. This resembles

the association with a single “predicted” concept in the current model. Third, a recent

study by Neely et al. (2010) suggests that under conditions of cognitive load, activation

of concepts is eliminated within 1,200 ms after the target onset unless expectancy mecha-

nisms are initiated by the use of a high RP, similar to the way the loss of activation of a

semantic neighborhood due to repeated transitions in the current model is reversed by

controlled noise modulations. If, however, no cognitive load is applied, priming was

found to be persistent at long SOAs even with a low RP, similar to the way priming is

maintained in our network due to the default tendency to avoid transitions in LDT (cf.

Hutchison, Neely, & Johnson, 2001; Neely et al., 2010). Finally, there are indications that

spreading activation and expectancy effects interact (Balota et al., 1992), a result which

fits well with the view that both are based on the same mechanism, as in the current

framework. Nevertheless, the proposed theory resembles the expectancy mechanism only

to a certain extent: Although the expectancy theory suggests that in some circumstances

expecting wrong targets results in inhibition of responses, the presented model speaks

only of facilitation. In addition, the current model describes control only over the rate of

transitions; which transitions occur, in contrast, is entirely determined by the correlation

structure. Some studies, however, found more subtle expectancy effects directed only

toward certain types of prime–target relations (e.g., McKoon & Ratcliff, 1995). Such

effects cannot be reproduced by the model in its current form. Some natural extensions

of the model, however, may allow it to express these effects, as discussed later.

It is important to emphasize that the suggested theory of controlled processes does not

only constitute a partial mechanistic implementation of past theories but also offers a

novel contribution to the understanding of mediated and backward priming. As previously

described, two important results concerning these priming effects were not sufficiently

accounted for by previous automatic and controlled models of priming: the absence of

mediated priming in LDT at short SOAs; and the existence of backward priming in pro-

nunciation at short SOAs but not at long SOAs. To reiterate, the absence of mediated

priming in LDT is usually attributed to its being concealed by the employment of a

semantic matching strategy. However, there is evidence that this strategy, like
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expectancy, requires a long SOA to develop (Neely, 1977; Neely & Keefe, 1989), thus

casting doubt on its ability to comprise an important modulating factor at short SOAs.

The existence of backward priming in pronunciation, on the other hand, can be explained

by previous theories only if backward-related items are believed to share some sort of

semantic relations; but in that case, the effect should also persist at long SOAs—contrary

to experimental findings. The current model solves these two difficulties by suggesting

which control parameters might be effective even at short SOAs (i.e., initial noise) and

how LDT and pronunciation differ from one another such that task-specific long-SOA

outcomes are produced (i.e., different default noise values). This way, the two types of

priming effects are accommodated within a general framework describing the typical

processes occurring in semantic memory.

Our model also offers some insight into the typical differences in priming patterns

found in LDT and pronunciation when high- versus low-dominance exemplars are used

(Neely, 1991). As it turns out, when the experimental stimuli list is made of category-

exemplar pairs, both high-dominance exemplars (e.g., flower – rose) and low-dominance

exemplars (e.g., flower – lily) lead to semantic priming in LDT, but only the high-domi-

nance exemplars consistently show priming in pronunciation. Moreover, RP effects are

not evident for low-dominance exemplars in pronunciation (Neely, 1991). These results

are accounted for in our model by the presumed low correlation between the representa-

tions of low-dominance prime-target pairs in the semantic network, as well as by the pre-

sumed differences in initial noise between LDT and pronunciation. First, a low correlated

pair is prone to exhibit small priming effects. As semantic priming effects in lexical deci-

sion are stronger than in pronunciation (but see Hutchison et al., 2008), the combination

of an insensitive task and a target with weak correlations to the prime may explain why

priming is not significant under these conditions (for a related account, see McNamara,

2005). Moreover, since in pronunciation the system indulges in transitions by default, and

these transitions would almost never be to a low-dominance exemplar, any effect of the

prime on the low-dominance exemplars would decrease even further. In LDT, in contrast,

the system does not make transitions by default; therefore, the small priming effect pro-

duced by such pairs would be preserved. Finally, as RP can only make a difference when

there are priming effects to begin with, no RP effect is expected for low-dominance

prime-target pairs in pronunciation.

The model’s account for mediated and backward priming leads to three important pre-

dictions that have not been examined so far in semantic priming research with human

subjects. First, the model predicts that mediated priming in typical LDT should be evident

when expectancy to highly associated targets is strongly encouraged, compared to its

absence when such expectancy is not induced. This prediction comes from the fact that

mediated priming in the model strictly depends on a semantic transition and such a transi-

tion is encouraged when subjects expect strongly associated pairs. Note that this predic-

tion lies in contrast to the more common view (e.g., Neely, 1991) stating that mediated

priming is concealed when controlled processes are encouraged. In addition, if this pre-

diction is validated, it would support another major premise of the model, namely, that

controlled processes such as expectancy, and automatic processes such as spreading

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1593
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activation, do, in fact, interact (in contrast to their additive effect hypothesized by the

hybrid three-process theory; see also Balota et al., 1992).

A second prediction is that when expectancy to highly associated pairs is encouraged,

backward priming in lexical decision should mimic the pattern seen in pronunciation,

namely, a significant reduction in the effect when moving from short to long SOAs. This

prediction is based on the hypothesis that backward priming at short SOAs reflects the

existence of correlated representations between primes and targets while its absence at

long SOAs in pronunciation is the result of semantic transitions. Inducing expectancy to

strong associates encourages transitions and so backward priming effects should diminish

—just like in pronunciation tasks. Finally, a third and complementary prediction, which

was mentioned earlier, is that using a backward-only list in a pronunciation task (i.e., a

list which strongly encourages withholding transitions) should result in backward priming

at both short and long SOAs, since without transitions the prime-target correlations are

preserved. For the same reasons, repetition priming may also be strengthened using a

stimuli list with many backward-related pairs compared to a list with many highly associ-

ated pairs as the former will push the system to maintain prime activation (however, repe-

tition priming is affected by many other levels of processing, including orthographical and

phonological; therefore, any predictions regarding this effect should be treated cautiously).

6.1. Caveats and future developments of the model

A phenomenon that our model cannot easily address in its present form occurs when

subjects in a priming experiment are led to expect specific kinds of targets rather than tar-

gets that are generally associated with the prime. For instance, if the stimuli list in a

priming task contains mostly antonyms, it was shown that the priming effect is signifi-

cantly higher for antonym pairs compared to prime-target pairs with a different (and

therefore unexpected) type of semantic relation (McKoon & Ratcliff, 1995). Similarly, if

subjects are instructed by the experimenter to expect, for example, instances of body parts

after seeing the prime “building,” pairs which are congruent with the instructions will

produce higher priming effects than incongruent pairs (Neely, 1977), although no prior

semantic relation exists between the prime and target. What these examples have in com-

mon is that instead of relying on frequent associative relations learned during lifetime,

subjects base their expectations on episodic relations that were acquired during the exper-

imental session. Such expectancies could, in fact, be implemented in the model if we

assume that temporary, episodic connections are formed between active units of certain

patterns in the semantic network. For example, if memory pattern l is episodically con-

nected to memory pattern υ, the connectivity matrix should be reformulated to

JNEWij ¼ JOLDij þ j�mi �
l
j , with j being a positive coefficient indicating the relative weight of

the episodic connections compared to the original ones. With such connections added,

Herrmann et al. (1993) showed that the network, when converged to pattern l, started
having significant transition probabilities to pattern υ, even if the two patterns were

uncorrelated, and these probabilities increased with j. Many idiosyncratic connections

can be added this way and they will all influence the transition probabilities in the
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network. Other memory patterns would not be affected and the general behavior of the

network should remain the same. If, in a priming experiment, two such episodically

connected patterns are presented as prime and target, a significant priming effect would

emerge due to the prime-to-target transitions. In the more delicate case, when a certain

type of relation needs to be learned rather than an idiosyncratic connection between

unrelated concepts, a more complex structure of the semantic storage must be assumed in

which representations of concepts include a portion of units which reflect functional

relations (e.g., antonymity). In this case, formation of specific episodic connections

between certain functional units (rather than between the entire units active in two

concepts) can elevate the probability of transitions between concepts with the corresponding

relation, thus allowing the instantiation of complex expectancies.

Naturally, the way episodic connections are actually instantiated in the brain may be

more elaborate than the raw illustration presented above. Episodic learning is assumed to

involve the hippocampus, which, in turn, exchanges information with the neo-cortex where

semantic knowledge is presumably stored (McClelland, McNaughton, & O’Reilly, 1995;

see also Winocur, Moscovitch, & Sekeres, 2007). Therefore, implementing episodic associ-

ations as direct synaptic connections between concept patterns may be an oversimplifica-

tion. In reality, information might be transferred by a readout mechanism from the semantic

network to other areas (such as the hippocampus), where episodic connections based on any

relevant data are formed, and then sent back as input to the semantic network. In other

words, episodic connections might actually involve indirect routes. Indeed, former studies

show that the hippocampus might be involved in such higher order relational learning (e.g.,

Howard, Fotedar, Datey, & Hasselmo, 2005) and some evidence for the plausibility of a

readout mechanism for synonyms and antonyms has also been provided (Chen, Lu, & Holy-

oak, 2010). It may further be noted that when episodic effects are considered, other, nonse-

mantic aspects of the stimuli can also, in principle, affect the expectancy mechanism. For

example, Hutchison (2007) showed that subjects could control whether or not they applied

expectancy, on a single trial basis, according to the color of the prime, which was predictive

of the target relatedness. Such result can be incorporated within our framework assuming

that noise modulations are affected by contingencies in the physical properties of the stimuli

(e.g., color) in addition to their sensitivity to RTs. If, for example, a certain color becomes

associated with lower RTs when transitions are attempted, the system may learn to apply a

large noise (leading to transitions) each time the prime is presented in that color, but not

when the prime is in a different color. In other words, the system will learn to expect a

related target only when the prime is in the right color, leading to the observed experimental

findings. However, as this mechanism is almost completely within the realms of episodic

learning (rather than the interaction between episodic and semantic processes), we do not

develop it further in the current article.

Another important effect that was not addressed by the current model is inhibition in

priming. Indeed, in addition to the facilitating effects of related primes that the present

study has focused on, unrelated primes sometimes lead to slower recognition of targets

compared to neutral primes, demonstrating inhibition. Since in most cases the inhibitory

effects are unique to LDT and do not appear in pronunciation, they are often considered

I. Lerner, S. Bentin, O. Shriki / Cognitive Science 38 (2014) 1595
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to be the product of decision-making processes external to the semantic system (Neely,

1991). Indeed, several other findings unique to semantic priming in LDT, such as the

nonword facilitation effect (Neely, 1977), are also best accounted for by speculating the

existence of an independent decision-making module (e.g., Neely et al., 1989). However,

some studies clearly show that under certain conditions, at least part of the inhibition

effects are a direct result of wrong expectancies (e.g., Neely,1977).

As it turns out, expectancy-related inhibition can be achieved in our model, assuming

that the connections from the semantic to the lexical layer are strengthened after a transi-

tion from the prime pattern (a transition which, in effect, represents the prediction). Since

in typical semantic priming tasks there is no explicit need to use top-down information

for accurate performance, these connections were set to be subthreshold in our model,

affecting the dynamics only when combined with a corresponding bottom-up input arriv-

ing to the lexical network (see Lerner et al., 2012a; for details). However, if, after a tran-

sition, these connections are strengthened beyond a certain value, they will,

independently of external input, press the lexical network to converge to the word pattern

corresponding to the concept pattern which the semantic network has jumped to. In

related trials, this semantic transition is usually to a pattern related to the upcoming target

(or even the target itself); therefore, the additional pressure will mostly strengthen the

typical facilitation effects of these trials. In unrelated trials, however, the transition is to

an unrelated pattern and so the additional pressure will delay convergence to the target

(compared to neutral trials in which semantic-to-lexical connections do not have an

effect; see Lerner et al., 2012a), thus demonstrating inhibition. Indeed, such expectancy-

induced enhancement of the semantic feedback to the lexical layer has been suggested

independently by several authors to account for other priming-related phenomena (e.g.,

Brown, Stolz, & Besner, 2006; Robidoux, Stolz, & Besner, 2010; Stolz & Neely, 1995).

Future developments of the model could examine whether such strengthening can be

learned by a mechanism resembling the one used to adjust the noise in the present model,

and clarify what are the experimental conditions which encourage such a strategy (see

Lerner & Shriki, 2014, for more information).

6.2. A new perspective on automaticity

As a final note, returning to the automatic/controlled dichotomy, it is important to

emphasize that the current model, which combines autonomous neural-network mecha-

nisms with “controlled” manipulations of network parameters, may suggest a fundamental

distinction between automatic and nonautomatic processes. As we have suggested in the

present work, semantic transitions may be sensitive to controlled processes. In addition,

as briefly described above based on previous studies (e.g., Stolz & Neely, 1995), the con-

nectivity strength between the semantic and lexical network may also be intentionally

modulated, depending on whether bottom-up or top-down processes are emphasized in

the task. In other words, the underlying principle of the current model is that every

process which involves a change in the network state could potentially be under cognitive

control. However, correlations between stored patterns are an inherent trait of the
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network’s connectivity structure and therefore when one pattern is activated, its correlated

patterns are also activated to some degree and this simultaneous semi-activation cannot

be prevented. The only way that such co-activation could be changed is by modifying the

representations themselves (a lengthy procedure which includes unlearning the present

representations and relearning new ones). A good example of this attribute is the priming

effect of directly versus indirectly related pairs: Directly related pairs have correlated rep-

resentations and therefore elicit automatic priming which cannot be prevented as long as

the prime concept is accessed. Indirectly related pairs, on the other hand, require a transi-

tion in the semantic network. This transition can be avoided (as we hypothesized, for

example, in LDT) and, therefore, such priming is not automatic per se (see also, Jones,

2012). Hence, the fundamental distinction between automatic and nonautomatic processes,

which our model implies, is the distinction between processes that depend on overlap of

representations and processes that depend on transitions between representations. Encod-

ing representations in a correlated manner inevitably leads to their automatic dependency

on each other. Processes that involve a change from one active representation to another

are not necessarily automatic and can be affected by controlled manipulations. This dis-

tinction echoes, to a certain extent, a well-known proposal by Logan (1988) stating that

automaticity depends on the accumulation of domain-specific knowledge that enables

replacing long algorithmic computations with quick retrieval of relevant exemplars. How-

ever, in our view, it is not simply the accumulation of knowledge per se that makes the

difference but, rather, its organization as representations with a correlative structure. Such

a perspective can be related to the classic attributes of automaticity described by Shiffrin

and Schneider (1977): Automatic processes are fast (in our model, they do not require a

change in the network activity state, such as a transition from one pattern to another, as

they rely on correlations), do not suffer from capacity limitations and therefore run in

parallel (an activated pattern in the model is simultaneously activating all of its correlated

patterns), are unavoidable (a correlation-based encoding necessarily means a pattern can-

not be activated without the partial activation of its correlated patterns), and inflexible

(the only way to change the mutual dependency between correlated concepts is by

relearning their representations). Whether this formulation of automaticity can be broad-

ened to include other, nonsemantic procedures, remains to be discussed elsewhere.

7. Conclusion

The current work extended our previous network model of automatic semantic priming

(Lerner et al., 2012a) to capture some of the most important traits characterizing con-

trolled processes involved in this cognitive phenomenon. Assuming that latching dynam-

ics in the semantic network can be controlled by noise adjustments, we have shown how

different types of priming effects (semantic, associative, mediated, backward) are distinc-

tively influenced by these adjustments, and how different modulators of the task such as

SOA, prime–target relations, and RP yield separate optimization solutions which fit

known experimental results. Our approach allows for automatic and controlled priming
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effects to be interpreted within one framework and shows how the interplay between

them can be understood in neural network terms. Although the current work did not

address some important aspects of controlled priming such as inhibition and the formation

of complex expectancies, we have sketched how these effects may be integrated with our

approach in future extensions of the model. Our model also provides several testable pre-

dictions regarding backward and mediated priming which may be examined in future

semantic priming experiments. Finally, based on the mechanisms of our network, we sug-

gested a novel way of defining automatic versus nonautomatic processes that may be fur-

ther expanded to include other cognitive domains.
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Notes

1. The reasons why these parameters modulate the rate of transitions have to do with

the dynamical properties of attractor networks and are beyond the scope of the cur-

rent article.

2. Although choosing the noise values before and after a transition to be the parame-

ters of control may seem too simplified compared to the general problem (where

noise is modulated at each instant of time during a trial), this choice, in fact, leads

to approximately the same results as the general problem. The reason is that noise,

as long as it is not extreme (as in our model), affects the network dynamics mainly

at specific points in time when the network is ready to move from one attractor to

another (due to the adaptation mechanisms reaching a critical level, making the

attractor unstable). At these critical phases, a sufficiently high level of noise will

allow a transition to occur while a low level of noise will delay it. At other times,

when the network is safely converged to an attractor that is not yet unstabilized by

adaptation, noise does not have much effect as the nature of attractor dynamics acts

to resist interference and keep the network state static. Moreover, after a transition

has occurred, the adaptation mechanisms are “reset,” so to speak, because new

units will now be active, and so the next noise value to have an effect would be

the one just before the network is ready to make another transition. Consequently,

the noise values that really make a difference are the ones before each transition,

meaning that only a few control parameters—one before each potential transition—
can significantly change behavior. Moreover, in separate simulations we have per-

formed (data not shown), adding another control parameter, after the second
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transition and before the third, did not result in further modulation of performance

as the SOAs used in the simulations do not allow enough time for the network to

frequently complete more than two transitions; therefore, the region in the parame-

ter phase space where more than two transitions occur is not sufficiently explored

by the learning mechanism and is thus irrelevant. Acknowledging these facts, opti-

mizing just two noise values—one before the first transition and one after it (i.e.,

before the potential second transition) represents a faithful approximation to the

general optimization problem.

3. The semantic structure in our model determines the strength of correlations

between pairs and the types of associative transitions occurring in the network (see

Lerner et al., 2012a,b), which, in turn, determine the way priming is affected by

the learning mechanism. It does not, however, affect results other than through its

role in setting the correlations and transitions. Therefore, to study the effect of

learning on priming, it is necessary to compare pairs with different correlative and

transitional properties rather than compare different semantic structures. Using an

alternative semantic structure with stimuli pairs that have the same correlative

strength and transition probabilities as the one studied here would thus yield the

same results. Indeed, running the learning mechanism on the various semantic

structures used by Lerner et al. (2012a,b) yielded equivalent pattern of findings to

those of the current study when pairs with similar correlations and associative tran-

sition probabilities were compared (data not shown).

4. The noise values were not allowed to become negative. If the learning rule drove

any of the values below 0, the value was clipped to 0 instead.

5. Values from human experiments are presented only in the case where conditions

approximately matching the current simulations could be found. To the best of our

knowledge, there are no published experiments using typical LDT and mediated-only

lists at long SOAs or pronunciation tasks using backward-only lists at any SOA.
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Appendix

This appendix provides the main equations governing the network dynamics and the specific

parameter values that were used in the numerical simulations of the model. Please refer to

Lerner et al. (2012a,b) for more details. Units are indicated in brackets whenever relevant.

In all numeric simulations, the time step represented Dt = 0.66 ms.

a. The activity of the i-th neuron at time t, xi(t), was a logistic function of its local

input hi(t) which obeyed:

snhiðtÞ ¼ �hiðtÞ þ
XN

j¼1

JijxjðtÞ � kð�xðtÞ � pÞ � hþ Iexti ðtÞ � hext
� �

þþgi

With gi being the noise term. The synaptic depression of the connection weight

between the i-th and j-th neuron obeyed:

JijðtÞ ¼
Jmax
ij � JijðtÞ

sr
� UxmaxxiðtÞJijðtÞ

With Jmax being the Hopfield connectivity matrix for sparse patterns (Tsodyks, 1990):

Jmax
ij ¼

XP

l¼1

ðnli � pÞðnlj � pÞ
Npð1� pÞ

The temporal correlations in the noise were generated by filtering the noise using a

low-pass filter, which, for two time points separated by s ms, took the form:

f ðsÞ ¼ gamp � e
s

scorr
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b. The semantic and lexical network parameters

Parameter Semantic Network Lexical Network

Number of neurons, N 500 500

Sparseness, p 0.06 0.04

Correlation strength (% of overlapping

active neurons out of total active

neurons in a pattern)

0.1 (Strong)

0.066 (Moderate)

0.033 (Weak)

0

Neuronal gain, T 0.05 0.05

Neuron’s time constant, sn 7 [ms] 13 [ms]

Neuronal activation threshold, h 0.02 0.17

Regulation parameter, k 14.75 27.75

Maximal firing rate, xmax 100 [spks/s] 100 [spks/s]

Utilization of synapses within each

network, U[within]

0.206 [1/spks] 0 [1/spks]

Utilization of synapses between

networks, U[between]

Lexical to Semantic:

0.087 [1/spks]

Semantic to Lexical: 0

[1/spks]

Synaptic recovery time within each

network, sr [within]

93 [ms] —

Synaptic recovery time between

networks, sr [between]

Lexical to Semantic:

1333 [ms]

Semantic to Lexical: —

Input gain between networks (Raw

values. Actual values were

normalized by the number of pre-

synaptic active neurons in a pattern)

Lexical to Semantic: 2 Semantic to Lexical: 0.21

External input gain — 0.56

Input threshold, hext 1 0.25

Default noise amplitude, gamp(0)

(For both initial and late noise)

Pronunciation-like: 0.05

LDT-like: 0.01

0.025

Noise temporal correlations, scorr 17 [ms] 17 [ms]

Multiplication factor of the

exploration parameter, A
0.06 —

Exponential coefficient of the

exploration parameter, b
0.0125 —

Learning rate, a 0.002 —
Convergence threshold 0.95 0.95
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