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Abstract: 

Sleep, and particularly Slow Wave Sleep, is known to facilitate 
insight learning. The mechanism, however, remains unclear. 
Here, we suggest that sleep-dependent facilitation of insight is 
typically achieved in tasks requiring temporal pattern 
detection, and propose that compressed memory reactivations 
during sleep support such detection. We demonstrate this 
mechanism with a spiking neural network model of 
hippocampus-prefrontal cortex interactions. We show that 
supervised learning in the prefrontal cortex during wake 
benefits from prior sleep-dependent unsupervised learning in 
the hippocampus, allowing for quick extraction of temporal 
regularities that can be utilized to predict upcoming events. 
Without hippocampal learning, prediction of temporal 
patterns is very slow or fails completely. Thus, compressed 
memory replay at sleep gives a unique opportunity for 
developing insight into temporal patterns. 
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Introduction 
During the last two decades, sleep, and especially Slow 
Wave Sleep (SWS), has been shown to facilitate a wide 
range of cognitive functions, including high-level cognition 
such as gist learning and insight into hidden rules (Rasch & 
born, 2013). One account for these findings is offered by the 
memory consolidation theory. It suggests that the hippo-
campus registers ongoing sequential experiences during 
waking and those encoded memories are reactivated and 
transferred to the prefrontal cortex (PFC) for permanent 
storage during SWS. This transfer occurs gradually and 
allows the PFC to extract regularities embedded in the 
encoded experiences and reorganize them in efficient 
patterns. Evidence for memory replay occurring at short 
bursts in the rat hippocampus during SWS supports the 
consolidation theory (Wilson & McNaughton, 1994). 
Moreover, replay of the most recent encoded experiences 
can also occur at wake before decision points, possibly 
supporting active planning (Rasch & Born, 2013). However, 
it is not clear how such replay facilitates insight learning. 

We developed a novel ‘Temporal Scaffolding’ hypothesis 
of sleep-induced insight learning. This hypothesis is built on 
two observations: (1) The facilitatory effects of sleep on 
insight (defined here as rapid explicit recognition of new, 
unexpected patterns) in humans are most apparent when 
subjects are required to detect hidden temporal patterns in 
stimuli (Wagner et al., 2004; Fischer et al., 2006); and (2) 

Memory replay in the hippocampus during SWS tends to be 
time-compressed, such that encoded sequences are replayed 
in an accelerated manner (in rats, up to x20 faster than the 
original experience; Rasch & Born, 2013) 

Building on these two observations, we suggest that if 
information encoded during wake contains unanticipated 
temporal regularities occurring over time gaps larger than 
seconds, it is difficult to extract online due to the limits of 
typical Hebbian-learning timescales (which require activity 
coincidence at the 50-100ms level). However, the time-
compression characterizing replay of experiences during 
SWS bridges those gaps and allows the association of 
related bits of information that were experienced at 
disparate moments in time. Such temporal scaffolding could 
thus allow rapid detection of hidden temporal patterns in 
stored memories upon awakening, namely, insight. 

Methods 
To demonstrate the temporal scaffolding hypothesis, we 
developed a spiking neural network model of the 
hippocampus->PFC pathway. Bursts of spikes from the 
hippocampus (representing memory replay during wake that 
corresponds to the latest encoded sequential inputs from the 
environemnt) are transformed by the PFC into a prediction 
regarding the next upcoming environmental input in the 
sequence (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Core Network Architecture and Processes 
 



Predictions are optimized through supervised learning 
based on the continuous environmental inputs, using the 
Tempotron algorithm (Gutig & Sompolinksy, 2006). If the 
prediction results in an error, for each pre-synapatic spike i 
occurring at time ti within a replay, weights from the 
hippocampus to the PFC are updated according to: 
 
 
 

With 𝜆 being the lerning rate, K being a standard function 
describing the normalized post-synaptic potential (PSP) of 
each spike, and tmax being the time at which the PSP is 
maximal following the replay event. 

Unsupervised learning within the hippocampus (assumed 
to reflect learning in lateral connections during spontaneous 
sleep-dependent replay of previously encoded environmental 
inputs) allows detecting patterns in the input prior to wake. 
Unsupervised learning is implemented with Spike-Timing-
Synaptic Plasticity (STDP) combined with auto-encoding. 
For each two spikes i and j, occurring at times ti and tj during 
replay S, hippocampal weights are updated according to: 
 
 
 
 
 

 
With 𝑎!, 𝑎! and 𝜏!, 𝜏! being the learning rates and time 

constants for strengthening and weakening of weights, 
respectively. 

We simulated the ‘Number Reduction Task’, an insight 
learning task shown in humans to be facilitated by SWS 
(Wagner et al., 2004). Inputs were sequences of digits that 
included a fixed temporal pattern (specifically, a mirror 
image; e.g., 4 9 1 1 9 4), arriving during wake at a speed of 
approximately 1 per second. The model was run (1) before 
sleep-dependent hippocampal unsupervised learning; (2) 
after sleep-dependent learning. Hippocampal replay was 
compressed by a factor of ~80. 

Results 
Before sleep, the hippocampus was not able to perform 
pattern completion of the full mirror-sequence when given 
its initial part (Figure 2A, upper row, middle). Moreover, 
the PFC typically failed to converge on correct predictions 
given partial replay as input (Figure 2A, upper row, left; 2C, 
blue curve). On some runs (depending on the random 
initialization of the weights) correct predictions were 
achieved based on the partial input, but only after many 
trials (Figure 2C, brown curve). 

During sleep-dependent unsupervised learning, the 
hippocampus picked up the mirror-structure of the stored 
inputs (Figure 2B). Following sleep, pattern completion was 
present after partial replay (Figure 2A, upper row, middle). 
This time, the PFC consistently learned to predict the next 

input in the sequence, and it did it very quickly, 
demonstrating “insight” behavior (Figure 2C, green curve). 
PFC decision times were based on the completed replay 
pattern rather than its initial pattern (compare Figure 2A 
upper and lower rows, right). 

 
Figure 2: A. Learning before and after sleep. B. Hippo-

campal weights during sleep. C. Prediction errors at wake. 

Conclusion 
Our results demonstrate that temporal pattern detection 
during SWS could be the result of compressed memory 
replay, which allows regularities to fit into sufficiently short 
time periods to be picked on by Hebbian mechanisms. On 
the computational level, our work also demonstrates how 
initial unsupervised temporal learning could assist 
subsequent supervised temporal learning in transforming 
inputs into required outputs. 
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