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Summary

Mobile sleep-monitoring devices for consumer use have been gaining traction as a

possible replacement to traditional polysomnography recordings. Such devices

potentially offer detailed sleep analysis without requiring the use of designated sleep

labs operated by qualified technicians. However, the accuracy of these mobile

devices is often not sufficiently evaluated by independent researchers. Here, we

compared the performance of two popular mobile electroencephalogram-based sys-

tems, the DREEM 3 headband and the Zmachine Insight+. Both devices can be used

by participants with minimal training, and provide detailed sleep scoring previously

validated by the respective developers in comparison to the gold-standard of poly-

somnography. A total of 25 participants used both devices simultaneously to record

their sleep for two consecutive nights while also keeping a sleep log. We compared

the devices' performance, both with each other and in relation to the sleep logs, using

several well-known sleep metrics. In addition, we developed a Bayesian lower limit

for the devices' expected epoch-by-epoch sleep stage agreement based on their pre-

viously published agreement with polysomnography, and compared it with our empir-

ical findings. Results suggest that the Zmachine tends to overestimate periods of

wakefulness, likely at the expense of N1/N2 detection, whereas the DREEM tends

to underestimate wakefulness and mistake it for N1/N2, with both results more pro-

nounced than previously reported. In addition, we found that the agreement

between the devices tends to increase from night 1 to night 2. We formulate several

recommendations for how best to use these devices based on our results.
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1 | INTRODUCTION

While sleep is widely recognized as imperative to proper human

development and normal functioning throughout the day, accurate

sleep monitoring for clinical and research purposes using home

devices still leaves much to be desired. The gold-standard for sleep

monitoring is polysomnography (PSG), which allows investigators to

determine, among other things, the series of sleep stages that partici-

pants experience throughout the night (including N1, N2, N3, rapid

eye movement [REM] sleep, and Wake; Abhang et al., 2016; Iber

et al., 2007; Malhotra & Avidan, 2013). PSG devices, however, are not

simple to use and must be applied by qualified sleep technicians in a

lab, a procedure that places significant costs in money and time.

Additionally, a known phenomenon affecting PSG monitoring is the

“first-night-effects”, or FNE, which is characterized by the difficulty to

achieve sufficient quality sleep in the first night of testing due to the

necessity to sleep in an unfamiliar environment connected to a cum-

bersome monitoring device (Agnew Jr et al., 1966; Byun et al., 2019).
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While ambulatory PSG devices, used in participants' own homes, have

been shown to decrease FNE (Coates et al., 1981), they still require

the involvement of experienced technicians and are therefore not an

ideal solution. Such challenges in obtaining easy and accurate sleep

measurements may contribute to the fact that prevalent sleep disor-

ders like insomnia and narcolepsy are underdiagnosed in the general

population (Ohayon, 2011).

To tackle the aforementioned challenges, a promising approach

gaining traction over the last decade is using mobile sleep-monitoring

devices that are easily operated by individuals in their own homes for

multiple nights. Critical to this approach is the use of easily-placeable

physiological sensors (such as single or few-channel electroencephalo-

gram [EEG] devices) that allow reliable, efficient and automatic sleep

staging using internal algorithms. Several such devices have entered

the market over the last decade, but few have had their sleep-staging

performance validated in comparison to the gold-standard PSG. Two

devices, the Zmachine and the DREEM 3 headband, stand out from the

rest due to their comfort, current availability, relatively inexpensive

price tag (�$1500 USD) and, most importantly, the fact that their

sleep staging capabilities have been previously validated in compari-

son to PSG (Arnal et al., 2020; Wang et al., 2015), resulting in various

research studies incorporating them as part of their protocol (Lerner

et al., 2019; Pépin et al., 2021; Zambelli et al., 2022).

While both the Zmachine and the DREEM headband are consid-

ered viable tools for interested researchers and clinicians, they have

never been directly compared with one another, or validated by inde-

pendent researchers. Because each system utilizes different EEG

channels occupying different areas of the scalp, they are readily avail-

able for simultaneous use with minimal interference (Figure 1). In the

current study, we sought to compare the sleep staging performance

of these devices, as well as several additional measures relevant to

individual users. We particularly aimed to determine which, if either, is

more suitable for multi-night recordings of sleep in college-aged

students in their own homes. By applying several Bayesian analytical

tools, we also aimed to exploit the agreement between the devices as

an additional, independent validation of their consistency with the

gold-standard PSG.

2 | METHODS

2.1 | Sleep-monitoring devices

The DREEM 3 headband is a reduced-montage EEG device that mea-

sures brain activity and movements during sleep. It is secured at the

back of the head with velcro straps, which can be altered using vari-

ous sizes of extenders. The DREEM consists of five dry electrodes

(F7, F8, Fp2, O1, O2), and a 3D accelerometer that tracks the partici-

pants' head and body movement throughout the night. Raw data are

automatically analysed by a proprietary algorithm that produces a typ-

ical hypnogram with a 30-s epoch resolution differentiating between

four sleep stages (N1, N2, N3, REM) and wake (Arnal et al., 2020). The

collected data from the DREEM can be uploaded directly from the

headband to an online portal using a companion phone app (Alfin) and

Bluetooth connection, and thus accessed remotely.

The Zmachine is also a dry-montage EEG recorder that use three

disposable, self-stick EEG sensors. One EEG sensor is placed behind

each ear (M1, M2), and one on the back of the neck (ground). Sensors

are placed outside of the hairline for easy application and quick

removal. The Zmachine uses its own proprietary algorithm to track

three sleep stages, Light (N1/N2 combined), Deep (N3), and REM, in

addition to wake, producing a typical 30-s hypnogram. Additional

software can also be downloaded for free to further visualize col-

lected data. Zmachine data are stored locally on a microSD card.

Though the storage capacity is sufficient for recording multiple nights

in a row, the data must be physically removed from the device

between each participant.

2.2 | Participants

A total of 25 participants (15 females) were recruited from the student

population at The University of Texas at San Antonio through flyers and

participant pools (ages 17–23 years, M = 19.8 ± 1.55 years; years of edu-

cation: 12–20, M = 14.8 ± 1.8 years). All participants completed the

study for either class credit or monetary compensation. Exclusion criteria

included a history of sleep disorders, major neurological or psychiatric dis-

orders, head injuries, unusual memory deficits, use of sleep aids

(e.g. melatonin), and recreational drug use. All participants gave informed

consent for their participation in the study. Seven additional participants

began the study but were removed; two because they decided to with-

draw from the study and five were discarded due to failure in obtaining

usable sleep records for at least 1 night (this relatively high attrition rate

stemmed from our design focusing on assessing participants at their natu-

ral environment at home with no researcher supervision; this resulted in

some participants not tightening one of the devices sufficiently, leading it

F IGURE 1 Image of the two devices (DREEM, Zmachine) worn
simultaneously on a participant's scalp
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to disconnect or slip out of place during the night; two participants were

discarded due to poor recording of the Zmachine, and three were dis-

carded due to poor recording of the DREEM).

2.3 | Procedure

Eligible participants arrived at the lab, and received detailed training on

the simultaneous usage of the DREEM 3 headband and the Zmachine.

Participants were asked to maintain their everyday routine, sleep sched-

ule and caffeine/alcohol consumption throughout the study. Additionally,

participants were asked to keep a basic sleep log during the nights of

measurement, indicating the time they went to sleep and woke up, how

long it took them to fall asleep, the number of awakenings occurring dur-

ing each night, and what time they got out of bed. After training, the par-

ticipants took the devices home and spent two consecutive nights

monitoring their sleep in their natural environment (i.e. bedrooms). Upon

completion, participants returned the devices to the lab and received

compensation for their participation. Data for the DREEM 3 headband

was then accessed and downloaded through the DREEM portal, and

Zmachine data were extracted directly from the device using the micro

secure digital card.

2.4 | Statistical analysis

All data analysis was performed using Excel, MATLAB 2021b and

SPSS 27. The calculations below were conducted for the full dataset

as well as for each of the two experimental nights separately. One

participant failed to accurately record sleep data on night 1, and three

participants failed to accurately record night 2, due to either battery

or disconnection issues. Therefore, analysis of the data for these par-

ticipants included only the night for which their monitoring was suc-

cessful. Significance tests directly comparing night 1 and night

2 included only the participants with full datasets for both nights. In

addition, two participants failed to report the total time spent awake

after falling asleep, and these data points were discarded from

analysis.

2.4.1 | Comparison of summary statistics with the
sleep logs

We extracted four continuous metrics from each participants' sleep

log: (1) TST (total sleep time); (2) SOL (sleep-onset latency); (3) WASO

(wake after sleep onset); and (4) NoA (number of awakenings). Corre-

sponding measures were extracted from the sleep data collected by

the devices. TST, SOL and WASO are directly reported by each

device. To compute the NoA, the epoch-by-epoch sleep staging data

were manually scanned to detect any awakenings that occurred after

sleep onset lasting four consecutive epochs or more (disregarding

short awakenings, which are less likely to be consciously remembered

by participants). The four metrics were then compared between the

sleep logs and each EEG device to get an overall measure of consis-

tency between each device and participants' self-evaluation of sleep.

Results were compared in several fashions. First, Pearson's correlation

coefficients were computed between each device and the sleep logs,

as well as between the devices themselves for each of the four met-

rics. The correlation values between the devices and the sleep logs

were then compared with each other with a test of correlated correla-

tion coefficients using Fisher Z-transformation (Meng et al., 1992) to

determine whether one of the devices was more predictive of the par-

ticipants' self-evaluations. Comparisons of these correlations between

night 1 and night 2 were conducted using Dann and Clark's Z

(Raghunathan et al., 1996). Next, to evaluate if any of the devices intro-

duced a consistent bias, mean scores for each metric were individually

compared between each device and the sleep log and between the

devices themselves, as well as between night 1 and night 2, using inde-

pendent t-tests. In addition, Bland–Altman plots were compiled to quali-

tatively assess any trends in the differences. Finally, to estimate which

device yielded larger absolute biases from the sleep logs, we used the

Pitman–Morgan test to compare the variances of the differences

between each device and the sleep logs (as well as the variance of the

differences between night 1 and night 2 for each device by itself).

2.4.2 | Epoch-by-epoch comparisons of the devices

Epoch-by-epoch sleep staging data produced by each device were

aligned and compared against one another to determine levels of

sleep scoring agreement. Because the Zmachine does not differentiate

between N1 and N2 sleep, these stages were combined in the

DREEM output to allow for direct comparison. Epochs with incom-

plete data (due to either device not reporting sleep stage in the middle

of recording for any reason), amounting to 3.81% of the entire data-

set, were removed. A total of 20,638 and 16,519 epochs were com-

pared for night 1 and night 2, respectively (37,157 epochs overall).

First, we calculated stage-to-stage confusion matrices (including

Wake, combined N1/N2, N3, and REM), once with the DREEM Head-

band serving as the reference (i.e. for each sleep stage reported by

DREEM, we computed the percentage of epochs for each sleep stage

reported by the Zmachine), and once with the Zmachine serving as

reference. Second, Cohen's Kappa was computed to reflect the overall

agreement between the devices. We then analysed these matrices

and compared them with the previously reported confusion matrices

of each device with PSG. Full details of these latter analyses are

described in the Results.

3 | RESULTS

3.1 | Comparison of the DREEM and Zmachine
with participants' sleep logs

Our first analysis focused on outlining the various differences

between the devices, and between the devices and the sleep logs, for
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the four parameters of interests: TST, SOL, WASO and NoA. Any

significant or marginally significant effect is reported (uncorrected

p-values). The Discussion summarizes the main trends stemming from

these effects. Summary statistics across all participants for the

DREEM, Zmachine and sleep logs are presented in Table 1. We began

by calculating Pearson's correlation coefficients across participants

between each device and the sleep log, as well as between the

devices themselves (please note that because sleep logs are subjec-

tive, they are prone to biases and cannot be taken at face value; how-

ever, the biases themselves are often consistent and can be used to

assess the devices' accuracy; see Discussion). Results are presented in

Figures 2 and 3 (upper panels), and in Table 2. For TST, both devices

were highly correlated with the sleep logs (r23 = 0.808 and

r23 = 0.696 for the DREEM and Zmachine, respectively, both p

< 0.001; Figure 2, left upper panel), with the correlation for DREEM

trending towards a higher value (z = 1.311, p = 0.097). As seen in the

upper left panel of Figure 2, the line of best fit closely resembled a

perfect agreement with the sleep logs, whereas the Zmachine tended

to estimate lower TST values than the sleep logs. The other three

summary metrics (SOL, WASO and NoA) showed a far lower agree-

ment with the sleep logs, with the DREEM practically unable to pre-

dict participants' self-rating of SOL (r23 = 0.044; Figure 2, upper

panel, second from left) and the Zmachine unable to predict WASO

(r21 = 0.066; Figure 2, upper panel, second from right). The Zma-

chine did predict SOL slightly better (r23 = 0.376, p = 0.064) with its

correlation being higher than the DREEM (z = 1.714, p = 0.043;

Figure 2, upper panel, second from left), whereas the DREEM, despite

its correlation with WASO not reaching statistical significance (r21

= 0.342, p = 0.110; Figure 2, upper panel, second from right), did pre-

dict it better than the Zmachine (z = 1.714, p = 0.018). Finally,

DREEM was significantly correlated with participants' self-assessment

of NoA (r23 = 0.499, p = 0.011; Figure 2, upper right panel), whereas

the correlation was non-significant for the Zmachine (p = 0.106), but

there was no significant difference between them (p = 0.193). Lines

of best fit do not necessarily supply valuable information when the

correlations are low, but it is notable that they mostly showed the

TABLE 1 Summary sleep metrics
across participants (standard deviations
in parentheses)

Device DREEM headband Zmachine Sleep logs

TST (min)

Night 1 429.4 (± 140.0) 352.7 (± 88.9) 382 (± 100.1)

Night 2 385.4 (± 88.4) 345.8 (± 81.4) 375.7 (± 87.5)

Combined 407.0 (± 91.1) 345.9 (± 63.0) 377.9 (± 73.0)

SOL (min)

Night 1 17.9 (± 15.5) 31.4 (± 20.2) 22.6 (± 16.8)

Night 2 18.7 (± 23.1) 25.5 (± 20.5) 17.9 (± 9.8)

Combined 19.4 (± 17.9) 30.5 (± 20.3) 20.0 (± 11.1)

WASO (min)

Night 1 30.9 (± 40.9) 49.6 (± 68.8) 17.8 (± 21.0)

Night 2 15.9 (± 12.8) 24.8 (± 18.1) 12.2 (± 13.8)

Combined 24.7 (± 23.2) 37.8 (± 36.8) 16.9 (± 17.3)

NoA

Night 1 1.4 (± 1.3) 3.9 (± 2.3) 2.2 (± 2.3)

Night 2 1.1 (± 1.3) 3.8 (± 2.0) 1.6 (± 1.4)

Combined 1.2 (± 0.9) 3.9 (± 1.5) 2.1 (± 2.1)

Time in N1/N2 (min)

Night 1 218.4 (± 100.4) 173.6 (± 52.7) –

Night 2 189.6 (± 47.7) 171.4 (± 42.7) –

Combined 202.6 (± 56.8) 170.7 (± 35.3) –

Time in N3 (min)

Night 1 101.5 (± 36.0) 90.8 (± 25.3) –

Night 2 99.4(± 40.3) 86.0 (± 22.6) –

Combined 99.9 (± 35.4) 86.9 (± 21.9) –

Time in REM (min)

Night 1 109.5 (± 49.2) 88.3 (± 41.8) –

Night 2 96.3 (± 35.9) 88.4 (± 45.2) –

Combined 104.5 (± 40.6) 88.3 (± 33.8) –

Abbreviation: NoA, number of awakenings; REM, rapid eye movement; SOL, sleep-onset latency; TST,

total sleep time; WASO, wake after sleep onset.

4 of 11 WOOD ET AL.
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opposite tendency to TST, with the Zmachine almost uniformly pre-

dicting higher values than the DREEM for SOL, WASO and NoA, a

trend seen throughout this analysis. Finally, the correlations between

the two devices themselves (Figure 3) were high for TST, SOL and

WASO (all p < 0.01), and moderately high for NoA (p = 0.020).

We subsequently examined Bland–Altman plots comparing each

device with the sleep logs, as well as with each other (Figures 2 and 3,

lower panels). Consistent with the main theme in the correlation

results, the plots suggested that the DREEM tended to overestimate

TST compared with the sleep logs, whereas the Zmachine tended to

F IGURE 2 Correlation and Bland–Altman plots between each device (DREEM, Zmachine) and the sleep logs for the main four summary sleep
metrics. The dashed diagonal line in the correlation plots represents perfect agreement. NoA, number of awakenings; SOL, sleep-onset latency;
TST, total sleep time; WASO, wake after sleep onset; †p < 0.08; *p < 0.05; **p < 0.01; ***p < 0.001

F IGURE 3 Correlation and Bland–Altman plots between the DREEM and Zmachine for the main four summary sleep metrics. The dashed
diagonal line in the correlation plots represents perfect agreement. NoA, number of awakenings; SOL, sleep-onset latency; TST, total sleep time;
WASO, wake after sleep onset. *p < 0.05; **p < 0.01; ***p < 0.001
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underestimate it (Figure 2, lower left panel). Paired t-tests comparing

the mean difference between each device and sleep logs across

participants confirmed this estimation (t24 = 2.702, p = 0.013 and

t24 = �2.969, p = 0.007, for the DREEM and Zmachine, respec-

tively). SOL, WASO and NoA all showed the opposite tendency, with

Zmachine overestimating all three of these wake-related parameters

compared with the corresponding sleep log values (t24 = 2.754,

p = 0.011, t21 = 2.736, p = 0.012 and t24 = 4.166, p < 0.001, for

SOL, WASO and NoA, respectively; Figure 2, three lower right panels),

whereas the DREEM significantly underestimating NoA (t24

= �2.295, p = 0.038; Figure 2, right lower panel). Direct comparisons

of the DREEM and Zmachine (Figure 3) showed a significant mean dif-

ference for all parameters, with the DREEM producing higher values

for TST and Zmachine producing higher values for the remaining

parameters (all p < 0.01). Finally, comparing, for each of the four met-

rics, the absolute biases of each device from the sleep logs, a test of

variance showed that for TST, the Zmachine had larger discrepancies

from the sleep logs compared with the DREEM (σZMachine = 40.25 ver-

sus σDREEM = 24.35, t21 =4.806, p<0.001). Furthermore, graphical

inspection of the plots reveals that the discrepancy between the

devices and sleep logs for SOL, WASO and NoA tended to increase as

their values increased (Figure 2, three lower right panels), evident by a

smaller spread on the left side of the plot of each of these three

parameters and a higher spread on the right side of the plot. In other

words, the longer the SOL and WASO values and the higher the NoA

value were, the less the devices reflected participants' self-evaluation

of these metrics.

3.2 | Comparison to previously published
validation results

We next assessed the epoch-by-epoch sleep scoring agreement

between the DREEM and the Zmachine. We found that the agree-

ment between the devices based on Cohen's Kappa was 0.5297, indi-

cating moderate agreement. Confusion matrices for the sleep stage

comparison are presented on the two left panels of Figure 4 (upper

left panel with DREEM as reference, lower left panel with Zmachine

as reference). Compared with the previously published agreement

between each device and PSG (yielding Kappa values of 0.72 and

0.748 for Zmachine and DREEM, respectively; see also the corre-

sponding confusion matrices in Figure 4, middle panels; note that

values for the DREEM versus PSG reported here are calculated based

on the number of epochs cited in Figure 3 of Arnal et al. (2020) rather

than the percentages appearing in that figure, Those percentages

reflected averages over participants rather than percentage out of the

total data collected (Arnal, Personal communication). We chose to cal-

culate the percentages over the full data to allow direct comparison

with the corresponding data for the Zmachine in Wang et al., 2015,

Table 1), the agreement of DREEM with Zmachine was considerably

lower – a generally expected result given that the sleep scoring algo-

rithms of each device were independently developed to fit PSG-based

scoring. Nevertheless, we wanted to estimate if our findings are consis-

tent with those previously published results.

While the expected agreement between the devices cannot be

accurately deduced solely from their individual agreement with PSG,

F IGURE 4 Confusion matrices showing the level of agreement in sleep scoring (in percentages out of total number of epochs for that row;
the number of epochs for each cell are displayed below) between the DREEM and Zmachine based on the current study (left column), previously
published results for the agreement between each device and polysomnography (PSG; middle column; adapted from Arnal et al., 2020 and Wang
et al., 2015; please see Section 3.2), and the corrected agreement between each device and PSG based on our analysis (right column; the values
in the brackets display the range for the best 0.1% of results found in the analysis)
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it is possible to devise a minimal threshold for that agreement under

reasonable assumptions. Specifically, it is expected that the detection

of each sleep stage and wake by each device is based on at least

somewhat similar EEG markers, given that the very definition of sleep

stages is based on such markers (e.g. typical amplitudes of brain waves

for REM sleep and N3, sleep spindles and k-complexes for stage N2,

etc.; Iber et al., 2007). Therefore, it is expected that the agreement

between the devices would be higher than what would have been

obtained had their algorithms been completely independent. This

allows to set a lower limit for the agreement between the devices

based on each device's respective confusion matrix with PSG. In

mathematical terms, to compute the lower limit we assume condi-

tional independence between the devices given the PSG sleep scor-

ing, such that: p Zm¼ SijDR¼ Sj ,PSG¼ Sk
� �¼ p Zm¼ SijPSG¼ Skð Þ,

with Zm standing for the Zmachine, DR for the DREEM, and Si repre-

senting any of the four sleep/wake stages (Wake, N1/N2, N3 or

REM). In other words, we assume that to compute the probability

that the Zmachine classified an epoch as belonging to a certain

sleep stage, we only need to know the PSG determined for that

epoch, with any additional information given by the DREEM being

redundant (and vice versa). We use this mathematical identity and

Bayes' theorem to derive an equation for the expected sleep stage

classification by the Zmachine given the sleep stage classification

of DREEM as follows:

p Zm¼ SijDR¼ Sj
� �

¼
X

k

p Zm¼ SijDR¼ Sj,PSG¼ Sk
� � �p PSG¼ SkjDR¼ Sj

� �

¼
X

k

p Zm¼ SijPSG¼ Skð Þ �p DR¼ SjjPSG¼ Sk
� � �p PSG¼ Skð Þ

p DR¼ Sj
� �

ð1Þ

Each element in the final product can be taken directly from the

confusion matrices published in the previous validation studies with

p PSG¼ Skð Þ and p DR¼ Sj
� �

calculated based on the total number of

epochs in a sleep stage for the respective device out of the total num-

ber of epochs (i.e. row sum and column sum in the confusion matrices

in the upper middle panel of Figure 4). In a similar vein, the expected

sleep stage classification of the DREEM given the sleep stage classifi-

cation of Zmachine would be:

p DR¼ SijZm¼ Sj
� �¼

X

k

p DR¼ SijPSG¼ Skð Þ �p Zm¼ SjjPSG¼ Sk
� �

�p PSG¼ Skð Þ
p Zm¼ Sj
� � ð2Þ

Using the equations above, we calculated the minimal expected

agreement between the devices for each sleep stage and compared it

with the actual agreement calculated based on the data we collected.

Results are presented in Figure 5.

As can be seen, for both directions of comparison (DREEM given

Zmachine and Zmachine given DREEM), the empirical agreement

between the devices was above the lower limit for N3 and REM, but

below it for Wake and N1/N2. This suggests that the agreement we

found between the devices for N1/N2 and Wake is inconsistent with

the previously reported agreement of each device with PSG.

We next asked what changes needed to be applied to the confu-

sion matrices of each device with PSG such that they will be consis-

tent with our own data. Specifically, we attempted to find the minimal

correction that could be applied to those previous confusion matrices

(middle panels of Figure 4) such that for all stages, the agreement

values we found would be higher than the lower limit derived by

assuming conditional independence.

To accomplish that, we expressed the confusion matrices in

the middle panels of Figure 4 as 24 variables (p1, …, p24), reflecting

the probabilities of each cell in the first three columns and all four

rows of both matrices (the last REM column of each matrix is not

included because it is constrained by the requirement that all rows

sum up to 1). We then implemented an iterative search algorithm

(the Nelder–Mead simplex algorithm, implemented in MATLAB

through the fminsearch command) to look for values of p1–p24 that

are as close as possible to the values of the original confusion

matrices (in terms of sum of absolute differences) while still yield-

ing, for each sleep stage, lower-limit agreement values between

the devices that are equal or lower than the empirical ones found

in our data. The algorithm was initialized to the original values with

a small added gaussian noise (μ = 0, σ = 0.01), under the constraints

that all values cannot be lower than 0 or higher than 1, and that the

sum for each row cannot exceed 1 (given that they reflect probabili-

ties). The algorithm was then run and allowed to find a local minimum.

Because the algorithm's output is sensitive to initial conditions, we

repeated the optimization procedure 100,000 times, each run starting

with a slightly different gaussian noise (additional runs did not change

the results much further, nor did initializing the algorithm with

completely random starting states). We then picked the output that

yielded the smallest change from the original values. This result is dis-

played in the right panels of Figure 4 (with values in brackets reflect-

ing the range of values found for the top 0.1% results). Compared

with the original confusion matrices in the middle panels of Figure 4,

it is evident that the algorithm suggested two main changes: (a) for

the DREEM, a higher percentage of reporting N1/N2 when the PSG

determines the participant is awake; (b) for the Zmachine, a higher

percentage of reporting Wake when the PSG determines the partici-

pant is at N1/N2. The remaining values in the confusion matrices are

largely similar to the original ones. Thus, our analysis suggests that the

previously reported accuracy in the ability of DREEM to detect wake

and the ability of the Zmachine to detect N1/N2 may be exaggerated,

while their reported abilities in detecting N3 and REM may be more

trustworthy.

3.3 | Differences between night 1 and night 2

To conclude our analyses, we repeated each comparison described

above separately for night 1 and night 2 to determine whether the

quality of sleep monitoring of each device changed over time and

usage, and if indications of FNE could be detected. Effects of the
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individual nights are displayed in Table 2. Consistent with Section 3.1,

only instances where significant or marginally significant changes

between the two nights (uncorrected p-values) occurred are reported.

A summary of the trends stemming from these effects is offered in

the Discussion.

Analysing each of the four summary metrics, we found that the

Zmachine showed a significant increase in its correlation with the

sleep log from night 1 to night 2 for TST (Z = 2.132, p = 0.033). High

correlations were found on both nights, but to a much lower degree

for night 1 (r = 0.508, p = 0.011) compared with night 2 (r = 0.841,

p < 0.001). In comparison, the change in TST for DREEM from night

1 (r = 0.74) to night 2 (and r = 0.817) was not significant (p = 0.459).

Fischer Z-transformation confirmed that the difference in correlations

between the devices and the sleep log was significant for night 1, but

not for night 2 (z = 1.74, p = 0.041 and z = �0.44, p = 0.329 for

night 1 and night 2, respectively). Likewise, the correlation for TST

between the devices themselves significantly increased from night

1 to night 2 (Z = 2.447, p = 0.014), with r-values increasing from

0.635 to 0.9 (both p < 0.001). Lastly, the change in direct correlation

between the devices for SOL showed a trend (Z = 1.84, p = 0.065),

again reflecting an increase from night 1 (r = 0.505, p < 0.012) to

night 2 (r = 0.656, p < 0.001).

Comparisons of the change from night 1 to night 2 in the aver-

age biases between the devices and the sleep logs showed that

there were no significant differences, with only the DREEM show-

ing a trend towards lower discrepancies for SOL on night 2 (t20

= 2.028, p = 0.056). A significant reduction in average bias from

night 1 to night 2 for SOL was also evident when comparing

directly between the devices themselves (t20 = 2.138, p = 0.045).

Comparing the change from night 1 to night 2 in the magnitude of

the absolute biases of each device from the sleep log, we found

that both devices showed significantly smaller discrepancies in

night 2 for both TST and WASO, and the discrepancies between

the devices themselves were also significantly lower for night 2 for

TST and WASO (all p < 0.02). Finally, comparing the epoch-by-

epoch agreements between the devices, we found only a slight

increase from night 1 to night 2 (Cohen's kappa = 0.50 and 0.56

for night 1 and night 2, respectively).

4 | DISCUSSION

Overall, our results comparing the DREEM headband and Zmachine

showed several consistent patterns: the devices were highly corre-

lated among themselves and with participants' sleep logs for detection

of sleep, but correlated to a far lesser extent in detection of wake.

This discrepancy stemmed from the Zmachine detecting significantly

more wake than the DREEM, strongly affecting parameters like

WASO, SOL and NoA that constitute a relatively small percentage of

total monitoring time, but less affecting TST, which constitutes most

of the monitoring time (Table 1). The discrepancy in detecting wake

was also evident in the epoch-by-epoch comparison, yielding high

levels of confusion between wake and N2 for both devices, and to a

lesser degree also between wake and REM (Figure 4, left column).

We used two methods to evaluate which device is more accu-

rate. First, we compared the devices' scoring with the sleep logs.

Naively, this comparison seems to show some advantage to the

DREEM, yielding smaller average biases from the sleep logs for all

the wake-related parameters (SOL, WASO, NoA) and smaller abso-

lute biases for TST. However, it is well established that subjective

self-reports of sleep are often biased compared with PSG, with

typical underestimation of WASO, overestimation of TST, and

either overestimation or accurate estimation of SOL (Kaplan

et al., 2012; Lehrer et al., 2022; McCall et al., 1995). Our data in

Table 1 are consistent with this pattern for WASO but exhibit the

typical overestimation of TST only when comparing the sleep logs

with the Zmachine, and only show accurate estimation of SOL

when comparing the sleep logs with the DREEM (when compared

with the Zmachine, SOL was actually underestimated). These dis-

crepancies are consistent with our conclusion that the DREEM

overestimates sleep, and the Zmachine overestimates wake.

The second method we applied to evaluate the devices' accuracy

was a re-estimation of their agreement with PSG based on a combina-

tion of their direct agreement with each other and previously pub-

lished validation studies. Results suggested that previous agreement

values with PSG were over-optimistic, particularly concerning the

degree to which both devices confuse Wake with N1/N2. The

DREEM, according to our results, is more susceptible to mistake Wake

for N1/N2 than previously reported, whereas the Zmachine tends to

F IGURE 5 Empirical agreement
between the Zmachine and the DREEM
based on our collected data compared
with a lower limit computed based on
theoretical considerations from published
polysomnography (PSG)-validation
studies (Arnal et al., 2020; Wang
et al., 2015)
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make the opposite error (Figure 4, right column). Note, however, that

these results stem from a minimal correction applied to the previous

PSG validation findings such that they will fit our data; it is possible

that still a bigger correction is warranted, in which case the real agree-

ment might even be lower.

Finally, when comparing differences between night 1 and night

2, the general trend emerging from the various significant results was

that the devices mostly improved their agreement for night 2. Because

there are only 2 nights of data to assess, we cannot definitively

account for what caused this increased agreement; however, several

reasonable hypotheses could be suggested. First, this finding could

result from participants becoming more comfortable with the moni-

toring devices, and thus reducing FNE (a hypothesis that is supported

by an evident reduction in SOL, WASO and NoA in night 2; Table 1);

second, participants' accuracy filling up the sleep logs might have

improved, reducing the overall measurement noise; and third, the

increased agreement could have resulted from an improved accuracy

of the Zmachine's algorithm, which, according to the device's manu-

facturers, benefits from continued monitoring by allowing the detec-

tion of individuals' “sleep signature”. Nevertheless, the contribution of

this last feature to the improved agreement on night 2 is likely low

because even a short period of sleep is noted to produce an accurate

sleep signature – making it probable that a signature has already been

established early on during the first night.

4.1 | Additional considerations and
recommendations

Beyond accuracy in sleep detection and scoring, additional aspects

should be considered when deciding which mobile sleep-monitoring

device to use in research or clinical settings. Both the DREEM and

Zmachine are user friendly, take only a few minutes to set up, and

can be used autonomously after a short demonstration. However,

the DREEM is slightly more prone to falling out of position during

the night compared with the Zmachines' stick-on electrodes; the

DREEM user may therefore be required to take additional measures,

such as wearing a sweatband over the device, to keep it in place

overnight (which, admittedly, is not a perfect solution for active

sleepers who tend to toss and turn a lot during the night). On the

other hand, due to the Zmachine's placement of electrodes on the

back of the neck, it could potentially be at a disadvantage in record-

ing important sleep events like spindles and k-complexes – events

that some investigations may find useful. In addition, because the

Zmachine uses disposable sensors, their regular replenishment may

add significant costs in the long term. Taking both sleep scoring

accuracy and practical use considerations into account, it seems to

us that the DREEM headband should be preferred when sleep stag-

ing is central to the investigators, especially when the target popula-

tion is young, healthy students – a typical setting of basic research

studies. To compensate for the relative weakness of the DREEM in

differentiating Wake from N1/N2, future studies could employ

simultaneous use of wrist actigraphs, which have previously been

used alongside EEG-based sleep devices and shown positive results

(Lerner et al., 2016; Martin & Hakim, 2011), In contrast, when the

population of interest may be more prone to face monitoring diffi-

culties (e.g. elderly population or people with sleep deficiencies), the

Zmachine may be preferred due to its lower sensitivity to move-

ments during sleep, especially if the differentiation between sleep

and wake is of higher importance than detailed sleep staging. This

latter scenario may be more common in clinical investigations. Nev-

ertheless, please note that our cohort of participants was composed

of college-aged students without sleep abnormalities; therefore, any

generalizations from this cohort to other populations should be

done with caution.

4.2 | Limitations and future directions

Given that our study aimed to test the DREEM and Zmachine devices in

natural settings, it unavoidably limited the level of control we could exert

over participants' behaviour. For example, participants had varying sleep

and wake times, and some had more trouble keeping the devices well

attached to their scalp than others. An alternative approach could have

had the experiment be fully conducted in the lab – at the expense of pre-

serving a natural sleep environment and potentially increasing FNE

effects. In addition, our study measured sleep for only two consecutive

nights, while the developers of the Zmachine suggest that its algorithm

improves its accuracy with time (a claim that our night 1–night 2 compari-

sons offer some support for); it is therefore possible that the agreement

between the devices would have improved with longer monitoring, and

further studies with these devices could look to extend the monitoring

period, perhaps to a week, to get a more robust assessment. Neverthe-

less, the published validation of the Zmachine's (as well as the DREEM's)

algorithm against PSG only used a single experimental night (Wang

et al., 2015), informing our decision to restrict the monitoring time. Finally,

our method of utilizing direct comparisons between two mobile sleep-

monitoring devices to draw conclusions on their agreement with PSG

(providing that previous PSG validation results are available for each)

could be utilized by future studies to allow relatively easy (if limited) re-

evaluation of the accuracy of such devices against the gold-standard in

the industry.
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